3.1: Finite, \(\sigma \)-finite, and complete measures. Let \(\mu \) be a measure on a \(\sigma \)-algebra \(\mathcal{A} \) in a set \(X \).

The measure \(\mu \) is **finite** if \(\mu(X) < \infty \).

The measure \(\mu \) is **\(\sigma \)-finite** if there exists a countable collection \(\{E_n\} \) in \(\mathcal{A} \) such that \(X = \bigcup_{n=1}^{\infty} E_n \) and \(\mu(E_n) < \infty \).

A measure space \(\{X, \mathcal{A}, \mu\} \) is **complete** if for each \(A \in \mathcal{A} \) with \(\mu(A) = 0 \), every subset \(E \subset A \) is in \(\mathcal{A} \).

It follows from the monotonicity of a measure, that if \(\{X, \mathcal{A}, \mu\} \) is complete, then for each \(A \in \mathcal{A} \) with \(\mu(A) = 0 \), we have for every \(E \subset A \) that \(\mu(E) = 0 \).

3.2: Some Examples. (a) For any nonempty set \(X \) and \(\mathcal{A} = \{\emptyset, X\} \), the trivial \(\sigma \)-algebra, the function \(\mu : \mathcal{A} \to \mathbb{R}^* \) defined by

\[
\mu(E) = \begin{cases}
0 & \text{if } E = \emptyset, \\
\infty & \text{if } E = X,
\end{cases}
\]

is a measure.

(b) For a nonempty set \(X \) and \(\mathcal{A} = 2^X = \mathcal{P}(X) \) the discrete \(\sigma \)-algebra, the function \(\mu : \mathcal{A} \to \mathbb{R}^* \) defined by setting \(\mu(E) \) equal to the number of elements of \(E \) if \(E \) is a finite set, and setting \(\mu(E) = \infty \) if \(E \) is not a finite set, is a measure, called the counting measure.

For this measure \(\mu(B - A) = \mu(B) - \mu(A) \) fails when \(\mu(A) = \infty \): for \(X = \mathbb{N} \), \(B = \{n, n+1, n+2, \ldots\} \) and \(A = \{n+k, n+k+1, n+k+2, \ldots\} \) for some integer \(k \geq 1 \), we have \(B - A = \{n, n+1, \ldots, n+k-1\} \) for which \(\mu(B - A) = k \) while \(\mu(B) = \infty \) and \(\mu(A) = \infty \), making \(\mu(B) - \mu(A) \) undefined.

(c) Let \(X = \{x_n\} \) be a sequence, and \(\{\alpha_n\} \) a sequence of nonnegative real numbers.

The function

\[
\mu(E) = \sum\{\alpha_n : x_n \in E\}
\]

is a \(\sigma \)-finite measure on the discrete \(\sigma \)-algebra \(\mathcal{A} = 2^X \).

This measure is finite if \(\sum \alpha_n < \infty \).

(d) For an infinite set \(X \) (possibly uncountable), and the discrete \(\sigma \)-algebra \(\mathcal{A} = 2^X \), the function \(\mu : \mathcal{A} \to \mathbb{R}^* \) defined by \(\mu(E) = 0 \) if \(E \) is countable (including finite), and \(\mu(E) = \infty \) otherwise, is a measure.

(e) Let \(X = \mathbb{R}^n \) and \(\mathcal{A} = \mathcal{P}(\mathbb{R}^n) \).
For a fixed $x \in \mathbb{R}^n$ we define $\mu : \mathcal{A} \to \mathbb{R}^*$ by

$$
\mu(E) = \begin{cases}
1 & \text{if } x \in E, \\
0 & \text{if } x \notin E,
\end{cases}
$$

is a finite measure, known as the **Dirac delta**-measure δ_x in \mathbb{R}^N concentrated at x.

Proposition A. If $\{\mu_n\}$ are measures on the same σ-algebra \mathcal{A}, then $\sum \mu_n$ is a measure on \mathcal{A}.

The proof of this is a homework problem.

Corollary B. If μ_1, \ldots, μ_k is a finite collection of measures on the same σ-algebra \mathcal{A}, then $\mu_1 + \cdots + \mu_k$ is a measure on \mathcal{A}.

Proof. If we define $\mu_n(E) = 0$ for all $E \in \mathcal{A}$ (the trivial or zero measure) for all $n \geq k + 1$, we can then apply Proposition A to $\{\mu_n\}$ to get its sum $\mu = \sum \mu_n = \mu_1 + \cdots + \mu_n + 0 + 0 + \cdots = \mu_1 + \cdots + \mu_k$ is a measure on \mathcal{A}. □

Proposition C. Let $\{X, \mathcal{A}, \mu\}$ be a measure space. If \mathcal{B} is a σ-algebra in X such that $\mathcal{B} \subset \mathcal{A}$, then the restriction of μ to \mathcal{B} is a measure.

The proof of this is a straight-forward exercise.

Proposition D. If \mathcal{A} is a σ-algebra in X, and $B \subset X$, then $\mathcal{B} = \{A \cap B : A \in \mathcal{A}\}$ is a σ-algebra in B.

The proof of this is a homework problem.

Proposition E. If \mathcal{A} is a σ-algebra in X, μ a measure on \mathcal{A}, and $B \in \mathcal{A}$, then the restriction of μ to $\mathcal{B} = \{A \cap B : A \in \mathcal{A}\}$ is a measure.

Proof. Apply Propositions C and D, noting that with $B \in \mathcal{A}$ we have $\mathcal{B} \subset \mathcal{A}$. □

4. Outer Measures. An extended real-valued set function on X is an **outer measure** if

(i) μ_e is defined for every element of $\mathcal{P}(X)$,
(ii) μ_e is nonnegative and $\mu_e(\emptyset) = 0$,
(iii) μ_e is monotone, i.e., if $A \subset B$, then $\mu_e(A) \leq \mu_e(B)$, and
(iv) μ_e is countably subadditive, i.e., for $\{A_n\} \in \mathcal{P}(X)$, there holds $\mu_e(\bigcup A_n) \leq \sum \mu_e(A_n)$.

A collection \mathcal{Q} of subsets of a set X is a sequential covering for X if

(i) $\emptyset \in \mathcal{Q}$, and
(ii) for every $E \subset X$ there is a countable collection $\{Q_n\}$ in \mathcal{Q} such that

$$
E \subset \bigcup_{n=1}^{\infty} Q_n.
$$
Example. A sequential covering of \(\mathbb{R}^n \) is the collection of all closed cubes.

We describe a general procedure by which an outer measure is constructed from a sequential covering \(Q \) of set \(X \) and an arbitrary nonnegative function \(\lambda : Q \to \mathbb{R}^* \) satisfying \(\lambda(\emptyset) = 0 \).

For each \(E \in \mathcal{P}(X) \), we define \(\mu_e : \mathcal{P}(X) \to \mathbb{R}^* \) by

\[
\mu_e(E) = \inf \left\{ \sum_{n=1}^\infty \lambda(Q_n) : Q_n \in Q, E \subset \bigcup_{n=1}^\infty Q_n \right\}.
\]

By the definition of \(\inf \), if \(\mu_e(E) < \infty \), then for every \(\epsilon > 0 \) there is a countable collection \(\{Q_{n,\epsilon}\} \) of elements in \(Q \) such that

\[
E \subset \bigcup_{n=1}^\infty Q_{n,\epsilon} \text{ and } \sum_{n=1}^\infty \lambda(Q_{n,\epsilon}) \leq \mu_e(E) + \epsilon.
\]

Proposition 4.1. The function \(\mu_e \) is an outer measure.

Proof. We have four properties to verify.

(i) \(\mu_e(E) \) is defined on every element of \(\mathcal{P}(X) \): this follows because the infimum is defined for each \(E \in \mathcal{P}(X) \).

(ii) \(\mu_e(E) \geq 0 \) for all \(E \in \mathcal{P}(X) \) and \(\mu(\emptyset) = 0 \): these follows because \(\lambda \) is nonnegative, and \(\lambda(\emptyset) = 0 \) and the constant sequence \(\{\emptyset\} \) is a sequential covering of \(\emptyset \).

(iii) \(\mu_e \) is monotone, i.e., \(A \subset B \) implies \(\mu_e(A) \leq \mu_e(B) \): this follows because every sequential cover of \(B \) is a sequential cover of \(A \), but not every sequential of \(A \) is a sequential cover for \(B \), so that the infimum for \(\mu_e(E) \) is smaller or equal to that for \(\mu_e(B) \).

(iv) \(\mu_e \) is countably subadditive.

We assume for a countable collection \(\{E_n\} \) of elements of \(\mathcal{P}(X) \) that \(\mu_e(E_n) < \infty \) for all \(n \) (for otherwise countable subadditivty follows trivially).

Fix \(\epsilon > 0 \).

For each \(n \in \mathbb{N} \), there is a countable collection \(\{Q_{j,n}\} \) in \(Q \) such that

\[
E \subset \bigcup_{j=1}^\infty Q_{j,n} \text{ and } \sum_{j=1}^n \lambda(Q_{j,n}) \leq \mu_e(E_n) + \frac{\epsilon}{2n}.
\]

The doubly-indexed collection \(\{Q_{j,n}\} \) is a countable collection that covers the union of the \(E_n \) so that

\[
\mu_e \left(\bigcup_{n=1}^\infty E_n \right) \leq \sum_{n=1}^\infty \sum_{j=1}^\infty \lambda(Q_{n,j}) \leq \sum_{n=1}^\infty \mu_e(E_n) + \epsilon \sum_{n=1}^\infty \frac{1}{2n} = \sum_{n=1}^\infty \mu_e(E_n) + \epsilon.
\]

Since this holds for any \(\epsilon > 0 \) we obtain the countable subadditivity of \(\mu_e \). \(\square \)
The outer measure μ_e generated by the sequential covering \mathcal{Q} and the nonnegative function λ may not coincide with λ on elements of \mathcal{Q}.

By the construction of μ_e we have for all $Q \in \mathcal{Q}$ that

$$\mu_e(Q) \leq \lambda(Q),$$

and strict inequality may occur for some Q. [We will see some examples of this soon.]