14.2: On the Preimage of a Measurable Set. Recall that a subset E of $[0,1]$ is relatively open if there is an open subset O of \mathbb{R} such that $E = O \cap [0,1]$.

For $f : [0,1] \to [0,1]$ continuous, the preimage $f^{-1}(O)$ of a relatively open set O in $[0,1]$ is a relatively open set in $[0,1]$, and hence the preimage is Lebesgue measurable.

Similarly the preimage of a relatively closed set is relatively closed, and hence the preimage of a relatively closed set is Lebesgue measurable.

More generally we consider the collection F of subsets E of $[0,1]$ for which the preimage $f^{-1}(E)$ (a subset of $[0,1]$) is Lebesgue measurable.

Proposition. The collection F is a σ-algebra of subsets of $[0,1]$ that contains Borel subsets of $[0,1]$.

Proof. We are to show that the relative complement of any element of F (relative to $[0,1]$) is in F, and that the union of a countable collection of elements in F is in F.

For $E \in F$ we have that $f^{-1}(E)$ is Lebesgue measurable.

For the relative complement $[0,1] - E$ to belong to F, we are to show that $f^{-1}([0,1] - E)$ is Lebesgue measurable.

Using properties of preimages of functions on intersections and complements we have

$$f^{-1}([0,1] - E) = f^{-1}([0,1] \cap E^c)$$

$$= f^{-1}([0,1]) \cap f^{-1}(E^c)$$

$$= [0,1] \cap (f^{-1}(E))^c$$

$$= [0,1] - f^{-1}(E).$$

Since $f^{-1}(E)$ is Lebesgue measurable, so then is $[0,1] - f^{-1}(E) = f^{-1}([0,1] - E)$, and hence $[0,1] - E \in F$.

Now take a countable collection $\{E_n\}$ of elements in F.

Then for each n we have $f^{-1}(E_n)$ is Lebesgue measurable, so that

$$f^{-1}\left(\bigcup_{n=1}^{\infty} E_n\right) = \bigcup_{n=1}^{\infty} f^{-1}(E_n)$$

is Lebesgue measurable, being the countable union of Lebesgue measurable sets.

Thus F is σ-algebra.

Each relatively open subset of $[0,1]$ belongs to F because its preimage is relatively open.

Since the σ-algebra B of Borel subsets of $[0,1]$ is the smallest σ-algebra containing the relatively open subsets of $[0,1]$, it follows that $B \subseteq F$. □

Proposition. If E is a Borel subset of $[0,1]$, then $f^{-1}(E)$ is a Borel subset of $[0,1]$.

Proof. We will show that \(\Omega = \{ E \subseteq [0, 1] : f^{-1}(E) \in \mathcal{B} \} \) contains \(\mathcal{B} \).

By an argument similar to that used in the proof of the previous Proposition, we show that \(\Omega \) is a \(\sigma \)-algebra in \([0, 1]\).

Each relatively open set \(O \) in \([0, 1]\) belongs to \(\Omega \) because, by the continuity of \(f \), we have \(f^{-1}(O) \) is relatively open and hence in \(\mathcal{B} \).

Since \(\Omega \) is a \(\sigma \)-algebra containing all of the relatively open subsets of \([0, 1]\), we have \(\mathcal{B} \subseteq \Omega \).

Thus, each every Borel subset \(E \) of \([0, 1]\) belongs to \(\Omega \), and it has the property that \(f^{-1}(E) \in \mathcal{B} \).

\[\square\]

14.3: Proofs of Two Propositions. We have now developed enough to prove, using the continuous, strictly increasing function \(f : [0, 1] \to [0, 1] \), the existence of a Lebesgue measurable subset of \(\mathbb{R} \) that is not a Borel set, and the existence of a Borel measure that is not complete.

Proposition 14.1. There exists a Lebesgue measurable subset \(D \) of \([0, 1]\) which is not a Borel set, and whose preimage under \(f \) is not Lebesgue measurable.

Proof. Recall that there is a Lebesgue measurable subset \(S \) of \([0, 1]\) with Lebesgue measure 0 whose image \(f(S) \) is Lebesgue measurable with Lebesgue measure 1.

Furthermore, the function \(f \) maps the Lebesgue measurable set \([0, 1] - S\) of Lebesgue measure 1 to the Lebesgue measurable set \([0, 1] - f(S)\) of Lebesgue measure zero.

Since Lebesgue measure is complete, every subset of \(S \) is Lebesgue measurable and has Lebesgue measure zero.

Likewise, every subset of \([0, 1] - f(S)\) is Lebesgue measurable and has Lebesgue measure zero.

Let \(E \) be the Vitali subset of \([0, 1]\) that is not Lebesgue measurable.

The set \(E \cap S \) is Lebesgue measurable because Lebesgue measure is complete: the set \(E \cap S \) is a subset of a Lebesgue measurable set of measure zero.

The set \(E - S \) is not Lebesgue measurable, because if it were, then \(E \) would be the (disjoint) union of the Lebesgue measurable sets \(E - S \) and \(E \cap S \).

The set \(D = f(E - S) \) is contained in \([0, 1] - f(S)\) because \(f(E) \subset [0, 1] \) and by the injectivity of \(f \) we have

\[
 f(E - S) = f(E \cap S^c) = f(E) \cap f(S^c) = f(E) \cap [f(S)]^c = f(E) - f(S) .
\]

Since \([0, 1] - f(S)\) is a set of Lebesgue measure zero, \(f(E) - f(S) \subset [0, 1] - f(S) \), and Lebesgue measure is complete, the set \(D \) is Lebesgue measurable with Lebesgue measure zero.

The preimage of \(D \) is not Lebesgue measurable because \(f \) is invertible so that

\[
 f^{-1}(D) = f^{-1}(f(E - S)) = E - S ,
\]

which is not measurable.
If the Lebesgue measurable set \mathcal{D} were a Borel set, then by the previous Proposition, the preimage $f^{-1}(\mathcal{D})$ would be a Borel set, and hence Lebesgue measurable.

By this contradiction, the set \mathcal{D} is not a Borel set.

Proposition 14.2. The restriction of Lebesgue measure on \mathbb{R} to the σ-algebra of Borel sets in \mathbb{R} is not a complete measure.

Proof. Let \mathcal{D} be the Lebesgue measurable set of Lebesgue measure zero, as given in the proof of Proposition 14.1.

By Proposition 12.3, there is a set \mathcal{D}_δ of type G_δ such that $\mathcal{D} \subset \mathcal{D}_\delta$ and

$$
\mu(\mathcal{D}_\delta) = \mu(\mathcal{D}_\delta) - \mu(\mathcal{D}) = \mu(\mathcal{D}_\delta - \mathcal{D}) = 0.
$$

The set \mathcal{D}_δ is a Borel set that has Lebesgue measure zero, but it contains the subset \mathcal{D} that is not a Borel set.

Thus the restriction of Lebesgue measure μ to the σ-algebra of Borel sets in \mathbb{R} is not a complete measure. □

Recall that \mathcal{F} is the σ-algebra of subsets E of $[0,1]$ whose preimages $f^{-1}(E)$ are Lebesgue measurable.

By way of a slight abuse of notation, let \mathcal{M} denote the σ-algebra of Lebesgue measurable subsets of $[0,1]$.

Then

$$
\mathcal{F} = \{ E \subset [0,1] : f^{-1}(E) \in \mathcal{M} \}.
$$

Proposition. For the function f, there holds $\mathcal{M} \not\subset \mathcal{F}$.

Proof. By Proposition 14.1, we have the existence of $\mathcal{D} \in \mathcal{M}$ for which $f^{-1}(\mathcal{D}) \not\in \mathcal{M}$.

Thus $\mathcal{D} \not\in \mathcal{F}$, which implies that $\mathcal{M} \not\subset \mathcal{F}$. □