Math 541 Lecture #34
III.17: The Lebesgue-Radon-Nikodym Theorem

§17: The Lebesgue-Radon-Nikodym Theorem. For two measures \(\mu \) and \(\nu \) on the same \(\sigma \)-algebra \(A \), we say that \(\nu \) is absolutely continuous with respect to \(\mu \), and write \(\nu \ll \mu \), if when \(\mu(E) = 0 \) for \(E \in A \), there holds \(\nu(E) = 0 \).

Given a measurable nonnegative \(f : X \to \mathbb{R}^* \), the set function

\[
E \mapsto \nu(E) = \int_E f \, d\mu, \quad E \in A,
\]

is a measure on \(A \) that is absolutely continuous with respect to \(\mu \).

We ask for the opposite: if \(\nu \ll \mu \), is there a measurable nonnegative \(f : X \to \mathbb{R}^* \) such that

\[
\nu(E) = \int_E f \, d\mu?
\]

The partial answer is the content of the Lebesgue-Radon-Nikodym Theorem (Lebesgue proved it for Lebesgue measure on \(\mathbb{R}^N \), then Radon extended it to Radon measures, and then Nikodym extended it to general measures).

Theorem 17.1 (Lebesgue-Radon-Nikodym). Let \(\{X, A, \mu\} \) and \(\{X, A, \nu\} \) be \(\sigma \)-finite measure spaces. If \(\nu \ll \mu \), then there is a measurable nonnegative function \(f : X \to \mathbb{R}^* \) such that

\[
\nu(E) = \int_E f \, d\mu, \quad E \in A.
\]

The function \(f \) is unique up to a set of \(\mu \)-measure zero.

Some Remarks: (1) The function \(f \) here is called the Radon-Nikodym derivative, since formally it satisfies

\[
d\nu = f \, d\mu.
\]

(2) The Theorem does not assert that \(f \) is \(\mu \)-integrable. This occurs if and only if \(\nu \) is finite.

(3) The assumption of \(\sigma \)-finiteness on both measures cannot be removed. You have it as two homework problems to construct counterexamples.

Proof of the Lebesgue-Radon-Nikodym Theorem in the case that both \(\mu \) and \(\nu \) are finite measures.

Let \(\Phi \) be the collection of measurable nonnegative functions \(\varphi : X \to \mathbb{R}^* \) that satisfy

\[
\int_E \varphi \, d\mu \leq \nu(E) \quad \text{for all} \ E \in A.
\]

The collection \(\Phi \) is nonempty since it contains the zero function.
For two $\varphi_1, \varphi_2 \in \Phi$, the function $\max\{\varphi_1, \varphi_2\}$ also belongs to Φ, because for any $E \in \mathcal{A}$, we have

$$
\int_E \max\{\varphi_1, \varphi_2\} d\mu = \int_{E \cap [\varphi_1 \geq \varphi_2]} \varphi_1 \, d\mu + \int_{E \cap [\varphi_1 < \varphi_2]} \varphi_2 \, d\mu \\
\quad \leq \nu(E \cap [\varphi_1 \geq \varphi_2]) + \nu(E \cap [\varphi_1 < \varphi_2]) \\
= \nu(E).
$$

Since ν is finite, i.e., $\nu(X) < \infty$, the quantity

$$
M = \sup_{\varphi \in \Phi} \int_X \varphi \, d\mu \leq \nu(X) < \infty.
$$

Let $\{\varphi_n\}$ be a sequence in Φ such that

$$
\lim_{n \to \infty} \int_X \varphi_n \, d\mu = M.
$$

The sequence of nonnegative measurable functions

$$
f_n = \max\{\varphi_1, \ldots, \varphi_n\}
$$

is nondecreasing and converges pointwise to a measurable nonnegative function $f : X \to \mathbb{R}^*$. This function f belongs to Φ because by the Monotone Convergence Theorem we have

$$
\int_E f \, d\mu = \lim_{n \to \infty} \int_E f_n \, d\mu \leq \nu(E) \text{ for all } E \in \mathcal{A}.
$$

To show that this f satisfies $\nu(E) = \int_E f \, d\mu$, we consider the measure

$$
\eta(E) = \nu(E) - \int_E f \, d\mu, \ E \in \mathcal{A}.
$$

If this measure is not the zero measure, then there is $A \in \mathcal{A}$ such that $\eta(A) > 0$. Since $\nu \ll \mu$, then $\eta \ll \mu$.

Thus $\eta(A) > 0$ implies by absolute continuity with respect to μ that $\mu(A) > 0$ (the contrapositive of absolute continuity of η with respect to μ).

Since μ is finite, i.e., $\mu(X) < \infty$, there exists $\epsilon > 0$ such that

$$
\xi(A) = \eta(A) - \epsilon \mu(A) > 0.
$$

The function $\xi : \mathcal{A} \to \mathbb{R}^*$ defined by

$$
\xi(E) = \eta(E) - \epsilon \mu(E)
$$

is a signed measure on \mathcal{A}.
By Proposition 16.2, the set \(A \) contains a positive subset \(A_0 \), so that
\[
\xi(E) = \eta(E \cap A_0) - \epsilon \mu(E \cap A_0) \geq 0 \quad \text{for all } E \in \mathcal{A}.
\]
Using the definition of the measure \(\eta \) we have for all \(E \in \mathcal{A} \) that
\[
\nu(E \cap A_0) - \int_{E \cap A_0} f \, d\mu - \epsilon \mu(E \cap A_0) \geq 0,
\]
or rewritten, that for all \(E \in \mathcal{A} \) that
\[
\int_{E \cap A_0} f \, d\mu + \epsilon \mu(E \cap A_0) \leq \nu(E \cap A_0).
\]
This implies that the measurable nonnegative function \(f + \epsilon \chi_{A_0} \) belongs to \(\Phi \) because for all \(E \in \mathcal{A} \), we have
\[
\int_{E \cap A_0} f \, d\mu + \epsilon \mu(E \cap A_0) \leq \nu(E \cap A_0).
\]
But \(f + \epsilon \chi_{A_0} \in \Phi \) contradicts the definition of \(M \) because
\[
\int_X (f + \epsilon \chi_{A_0}) \, d\mu = \int_X f \, d\mu + \epsilon \int_X \chi_{A_0} \, d\mu = M + \epsilon \mu(A_0) > M.
\]
Thus \(\eta \) is the zero measure, and hence
\[
\nu(E) = \int_E f \, d\mu \quad \text{for all } E \in \mathcal{A}.
\]
Suppose \(g : X \to \mathbb{R}^+ \) is another measurable nonnegative function for which
\[
\nu(E) = \int_E g \, d\mu, \quad \text{for all } E \in \mathcal{A}.
\]
To show that \(f = g \) a.e. with respect to \(\mu \), we consider for \(n \in \mathbb{N} \) the sets
\[
A_n = \left\{ x \in X : f(x) - g(x) \geq \frac{1}{n} \right\}.
\]
Then for all \(n \in \mathbb{N} \) we have
\[
0 = \nu(A_n) - \nu(A_n) = \int_{A_n} (f - g) \, d\mu \geq \int_{A_n} \frac{1}{n} \, d\mu = \frac{\mu(A_n)}{n}.
\]
These implies that \(\mu(A_n) = 0 \) so that \(f \geq g \) a.e. with respect to \(\mu \).
A similar argument shows that \(f \leq g \) a.e. with respect to \(\mu \), so that \(f = g \) a.e. with respect to \(\mu \). \(\square \)