We have used the Implicit Function Theorem to prove that the regular level sets are submanifolds, and that a Poincaré map is smooth.

Implicit Function Theorem 1.259. Suppose \(X, Y, \) and \(Z \) are Banach spaces, \(U \subset X, V \subset Y \) are open set, \(F : U \times V \rightarrow Z \) is a \(C^1 \) function, and \((x_0, y_0) \in U \times V \) satisfies \(F(x_0, y_0) = 0 \). If \(F_x(x_0, y_0) : X \rightarrow Z \) has bounded inverse, then there is a product neighbourhood \(U_0 \times V_0 \subset U \times V \) with \((x_0, y_0) \in U_0 \times V_0 \) and a \(C^1 \) function \(\beta : V_0 \rightarrow U_0 \) such that \(\beta(y_0) = x_0 \) and \(F(\beta(y), y) = 0 \) for all \(y \in V_0 \). Moreover, if \(F(x, y) = 0 \) for \((x, y) \in U_0 \times V_0 \) then \(x = \beta(y) \).

Proof. Define \(L : X \rightarrow Z \) by \(Lz = [F_x(x_0, y_0)]^{-1}z \) and \(G : U \times V \rightarrow X \) by \(G(x, y) = x - LF(x, y) \).

The function \(G \) is \(C^1 \), and \(F(x, y) = 0 \) if and only if \(G(x, y) = x \).

Also, \(G(x_0, y_0) = x_0 \) and \(G_x(x_0, y_0) = I - LF_x(x_0, y_0) = 0 \).

Since \(G \) is \(C^1 \) there is a product neighbourhood \(U_0 \times V_1 \) whose factors are metric balls, \(U_0 \subset U \) centered at \(x_0 \) and \(V_1 \subset V \) centered at \(y_0 \), for which \(\|G_x(x, y)\| < 1/2 \) for all \((x, y) \in U_0 \times V_1 \).

Let \(\delta > 0 \) be the radius of the ball \(U_0 \).

Since the function \(y \mapsto F(x_0, y) \) is continuous and vanishes at \(y_0 \), there is a metric ball \(V_0 \subset V_1 \) centered at \(y_0 \) such that \(\|L\| \|F(x_0, y)\| < \delta/2 \) for all \(y \in V_0 \).

For \((x, y) \in U_0 \times V_0 \), we have by the Mean Value Theorem 1.226 that

\[
\|G(x, y) - x_0\| = \|G(x, y) - G(x_0, y) + G(x_0, y) - x_0\| \\
\leq \|G(x, y) - G(x_0, y)\| + \|LF(x_0, y)\| \\
\leq \sup_{u \in U_0} \|G_x(u, y)\| \|x - x_0\| + \frac{\delta}{2} \leq \delta.
\]

This implies that \(G(x, y) \in \overline{U_0} \), and so \(G : \overline{U_0} \times V_0 \rightarrow \overline{U_0} \).

Again by the Mean Value Theorem we have

\[
\|G(x_1, y) - G(x_2, y)\| \leq \sup_{u \in U_0} \|G_x(u, y)\| \|x_1 - x_2\| \leq \frac{\|x_1 - x_2\|}{2},
\]

and hence \(G \) is a uniform contraction.

Then by the Uniform Contraction Theorem, there exists a unique \(C^1 \) function \(y \mapsto \beta(y) \) (the unique fixed point for each \(y \)) defined on the open ball \(V_0 \) with range in \(U_0 \) such that \(\beta(y_0) = x_0 \) and \(G(\beta(y), y) = \beta(y) \) for all \(y \in V_0 \).

By the definition of \(G \), we have that \(\beta(y) = \beta(y) - LF(\beta(y), y) \), and since \(L \) is has bounded inverse, we conclude that \(F(\beta(y), y) = 0 \) for all \(y \in V_0 \).

The proof of the Existence, Uniqueness, and Continuous Dependence on Parameters Theory is a consequence of this Implicit Function Theorem.
Existence, Uniqueness, and Continuous Dependence on Parameters

Theorem 1.260. Suppose the function \(f : J \times \Omega \times \Lambda \to \mathbb{R}^n \) is \(C^1 \). For \(t_0 \in J \), \(x_0 \in \Omega \), and \(\lambda_0 \in \Lambda \), there exist open sets \(J_0 \subset J \), \(\Omega_0 \subset \Omega \), and \(\Lambda_0 \subset \Lambda \) such that \((t_0, x_0, \Lambda_0) \in J_0 \times \Omega_0 \times \Lambda_0\), and a unique \(C^1 \) function \(\sigma : J_0 \times \Omega_0 \times \Lambda_0 \to \mathbb{R}^n \) given by \((t, x, \lambda) \mapsto \sigma(t, x, \lambda)\) such that \(\sigma(0, x, \lambda) = x \) and \(t \mapsto \sigma(t, x, \lambda) \) is a solution of \(\dot{x} = f(t, x, \lambda) \).

Proof. We first show that by scaling the time variable, we can assume the maximal interval of existence contains \([-1, 1]\).

Suppose \(\sigma \) is a solution of \(\dot{x} = f(t, x, \lambda) \), \(x(t_0) = x_0 \), where \(\sigma \) is defined on \([t_0 - \delta, t_0 + \delta]\) for some small \(\delta > 0 \).

For the scaled time variable \(\tau = (t - t_0)/\delta \), the function \(z(\tau) = \sigma(\delta \tau + t_0) - x_0 \) satisfies \(z(0) = 0 \) and

\[
\frac{dz}{d\tau}(\tau) = \delta \frac{d\sigma}{dt}(\delta \tau + t_0) = \delta f(\delta \tau + t_0, \sigma(\delta \tau + t_0), \lambda) = \delta f(\delta \tau + t_0, z + x_0, \lambda)
\]

for \(-1 \leq \tau \leq 1\), at least when \(z + x_0 \in \Omega \).

Conversely, if \(dz/d\tau = \delta f(\delta \tau + t_0, z + x_0, \lambda) \) has a solution defined on \(-1 \leq \tau \leq 1\), then \(\dot{x} = f(t, x, \lambda) \) has a solution defined on \([t_0 - \delta, t_0 + \delta]\).

Choose an open ball centered at the origin with radius \(r \) inside \(\Omega \) and let \(U \) denote the open ball centered at the origin of radius \(r/2 \).

Define Banach spaces

\[
X = \{ \phi \in C^1([-1, 1], \mathbb{R}^n) : \phi(0) = 0 \}, \quad Y = C([-1, 1], \mathbb{R}^n)
\]

where the norm on \(Y \) is the usual supremum norm, and the norm on \(X \) is the \(C^1 \) norm

\[
\|\phi\|_1 = \|\phi\|_0 + \|\phi'\|_0.
\]

Let \(X_0 \) denote the open subset of \(X \) consisting of those elements of \(X \) whose ranges are in the open ball \(U \) at the origin of radius \(r/2 \).

Consider the function \(F : (-1, 1) \times J \times U \times \Lambda \times X_0 \to Y \) given by

\[
F(\delta, t, x, \lambda, \phi)(\tau) = \phi'(\tau) - \delta f(\delta \tau + t, \phi(\tau) + x, \lambda).
\]

We will apply the Implicit Function Theorem to this function.

To do this we need to show that \(F \) is \(C^1 \).

The second summand in \(F \) is \(C^1 \) by the Omega Lemma (see Exercise 1.224).

For \(F \) to be \(C^1 \) it remains to show that the map \(d \) given by \(\phi \mapsto \phi' \) is \(C^1 \).

For \(\phi \in X \) we have \(\phi' \in Y \), and the map \(d \) is linear.

Because

\[
\|d\phi\|_0 = \|\phi'\|_0 \leq \|\phi'\|_0 + \|\phi\|_0 = \|\phi\|_1,
\]

the linear operator \(d \) is continuous, hence bounded.
Since the linear operator \(d : X \to Y \) is linear and bounded, it is its own derivative (property (v) of the derivative).

Thus we have that \(d \) is \(C^1 \).

If \((t_0, x_0, \lambda_0) \in J \times \Omega \times \Lambda \), then \(F(0, t_0, x_0, \lambda_0, \phi(0))(\tau) = 0 \) where \(\phi(0) = 0 \).

If we set \(\delta = 0 \) before we compute the partial derivative of \(F \) with respect to \(\phi \), we see that

\[
F_{\phi}(0, t_0, x_0, \lambda_0, 0) = d.
\]

We will show that \(d \) has bounded inverse, and then apply the Implicit Function Theorem.

With \(y \in Y \) continuous on \([-1, 1]\), we can define a linear operator \(L : Y \to X \) by

\[
(Ly)(\tau) = \int_0^\tau y(s)ds.
\]

By the Fundamental Theorem of Calculus,

\[
((d \circ L)(y))(\tau) = \frac{d}{d\tau} \int_0^\tau y(s)ds = y(\tau),
\]

and for \(\psi \in X \) (for which \(\psi(0) = 0 \)),

\[
((L \circ d)(\psi))(\tau) = \int_0^\tau \frac{d}{ds} \psi(s)ds = \psi(\tau).
\]

Thus \(L \) is an inverse for \(d \).

Is \(L \) bounded? That is, do we have \(\|L\| = \sup\{\|Ly\|_1 : y \in Y, \|y\|_0 = 1\} < \infty \)?

Since

\[
\|Ly\|_0 = \sup_{\tau \in [-1,1]} \left| \int_0^\tau y(s)ds \right| \leq \sup_{\tau \in [-1,1]} \int_0^\tau |y(s)|ds \leq \sup_{\tau \in [-1,1]} \int_0^\tau \|y\|_0ds = \|y\|_0,
\]

then

\[
\|Ly\|_1 = \|Ly\|_0 + \|(d \circ L)y\|_0 \leq \|y\|_0 + \|y\|_0 = 2\|y\|_0,
\]

so that \(\|L\| \leq 2 \).

By the Implicit Function Theorem, there is an open set \(K_0 \times J_0 \times \Omega_0 \times \Lambda_0 \) containing \((0, t_0, x_0, \lambda_0)\) and a unique \(C^1 \) function \((\delta, t, x, \lambda) \to \beta(\delta, t, x, \lambda)\) with range in \(X_0 \) such that \(\beta(0, t_0, x_0, \lambda_0) = 0 \) and

\[
F(\delta, t, x, \lambda, \beta(\delta, t, x, \lambda)) = 0 \text{ for all } (\delta, t, x, \lambda) \in K_0 \times J_0 \times \Omega_0 \times \Lambda_0.
\]

Thus there is \(\delta > 0 \) such that \(\tau \to z(\tau, t_0, x_0, \lambda_0) = \beta(\delta, t_0, x_0, \lambda_0)(\tau) \) is the unique solution of the IVP that depends \(C^1 \) on the its initial conditions and parameters. \(\square \)