Homework 21

1. Give a one line proof that no finite field is algebraically closed.

2. Prove:

 Theorem. Let K/F be a normal algebraic extension and let $f \in F[x]$ be an irreducible polynomial. If $\alpha, \beta \in K$ are roots of f, then there is a field isomorphism $\sigma : K \to K$ with $\sigma|_F = 1_F$ and $\sigma(\alpha) = \beta$.

3. Prove:

 Theorem. Let K/F be an algebraic extension. The following are equivalent.
 (a) K/F is normal.
 (b) If \bar{F} is an algebraic closure of F containing K, then any injective ring homomorphism $\sigma : K \to \bar{F}$ that is the identity on F has image equal to K.
