Homework 34

1. Let K have characteristic $p \neq 0$, and let $f \in K[x]$ be irreducible. Let m be the largest nonnegative integer such that f is a polynomial in x^{p^m} but is not a polynomial in $x^{p^{m+1}}$. Then $n = n_0 p^m$. If u is a root of f, then $[K(u) : K]_n = n_0$ and $[K(u) : K]_i = p^m$.

2. Prove that the following are equivalent.
 (a) L/K is purely inseparable.
 (b) L/K is algebraic and for every extension field M/L, the only K-embedding of L into M is the identity map.