Homework 35

1. Let $K = \mathbb{Q}$ and $L = K(x)$. Let $S = \{x^2 + x + 1, 2x^3 + x^2 + 3x + 1\}$. Prove that S is algebraically dependent over K by finding a nonzero polynomial $f \in K[x_1, x_2]$ with $f(x^2 + x + 1, 2x^3 + x^2 + 3x + 1) = 0$.

2. Let L/K be a field extension, and let S be a subset of L. Prove that if $u \in L$ is algebraic over $K(S)$, but not over $K(S - \{v\})$ for some $v \in S$, then v is algebraic over $K((S - \{v\}) \cup \{u\})$.

3. Let L/K be a field extension. Prove that every subset of L that is algebraically independent over K is contained in a transcendence base of L/K. Use this result to show that L/K has a transcendence base.