Homework 38

1. Let L/K be an algebraic Galois extension, let $G = \text{Gal}(L/K)$ and let H be a closed subgroup of G. Prove that L_H/K is Galois if and only if $H \triangleleft G$.

2. Recall the following definition from topology:

 Definition. A topological space X is Hausdorff if, given any two points $x, y \in X$ there are open sets U_x and U_y, with $x \in U_x$, $y \in U_y$, and $U_x \cap U_y = \emptyset$.

 Let L/K be an algebraic Galois extension. Prove that $G = \text{Gal}(L/K)$ with the Krull topology is a Hausdorff topological space.

3. Prove that a closed subset of a compact topological space is compact.