Do all five problems and show all work. Be sure that your work is done neatly and correctly. The exam is due on Wednesday, February 24, by 2:00 PM. You may use your course notes, textbook, and the algebra textbook by Dummitt and Foote. If you used a different algebra text when you took algebra, let me know which one, and I will probably allow you to use it as well. Please do not discuss the problems with anyone else except me until after 2:00 PM on the 24th.

(1) Let $K = \mathbb{Q}(\sqrt{-5})$, and let $L = K(i)$.
 (a) Find an integral basis for L/\mathbb{Q} and the discriminant of L/\mathbb{Q}.
 (b) Determine all primes of K that ramify in L/K.
 (c) Let p be a prime in \mathbb{Z}. Describe the shape of the factorization of p in L. Your description will depend on the congruence class of p modulo some integer N.

(2) Let $K = \mathbb{Q}(\sqrt{-23})$. The class number of \mathcal{O}_K is 3. Determine a representative of each ideal class.

(3) Let R be a Dedekind domain, and let I, J be nonzero ideals of R. Prove that there is an element $\alpha \in R$ such that $\gcd(IJ, \alpha R) = I + J$.

(4) Let $K = \mathbb{Q}(\sqrt{6}, \sqrt{10})$. You may assume that the discriminant of K is divisible by 2^8. Determine the discriminant of K and an integral basis of K.

(5) Let α be a root of an irreducible cubic polynomial $f(x) \in \mathbb{Q}[x]$. Let $K = \mathbb{Q}(\alpha)$, and assume that 2 splits completely in K/\mathbb{Q}. Prove that there is no $\beta \in \mathcal{O}_K$ such that $\{1, \beta, \beta^2\}$ is an integral basis of K.