Assignment for Nov. 12th.

1. Suppose we have 98 people in a room. For each person \(x \), let \(f(x) \) be the last four digits of \(x \)'s Social Security Number. Calculate the probability that \(f(x) = f(y) \) for some pair \(x \neq y \) in the room? (Hint: It's less that forty percent.)

2. Given the same room full of 98 people, let \(g(x) = 2^{f(x)} \pmod{191} \) with \(f(x) \) as defined in problem 1. What is the probability that \(g(x) = g(y) \) for \(x \neq y \) in the room? Explain your answer.

3. Suppose Bob's Elgamal public code is \(p = 3948771024761 \), his primitive root is \(\alpha = 138331186077 \) and key \(\beta = \alpha^a = 1724172158218 \) (where \(a \) is secret). He wants to send the message 298398711 to Alice – and sign it.

 He supposedly sends \((m, r, s) = (298398711, 2560116850843, 342851724060)\) where \(r = \alpha^k \) (and \(k \) is another secret exponent) and \(s = (m - ar)/k \pmod{p - 1} \). Determine whether the message indeed came from Bob. (Yes or no.)

4. Suppose that Eve has somehow found that Bob's secret \(k \) (used above) was equal to 1231357701. Show that she can now determine his other secret exponent \(a \). What is it?

 Of what use will that information be to Eve in the current situation?