Comment on "Signature of classical chaos on quantum tunneling"

David Farrelly1,* and Jeffrey Humpherys2

1Institute for Theoretical Atomic and Molecular Physics, Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, Massachusetts 02138

2Department of Chemistry and Biochemistry and Department of Mathematics and Statistics, Utah State University, Logan, Utah 84322

(Received 9 September 1993)

In a recent article, Chaudhuri and Ray [Phys. Rev. E 47, 80 (1993)] examined tunneling in a two-dimensional, nonintegrable Hamiltonian and apparently found a correlation between the onset of chaos and a dramatic change in the tunneling rate. Examination of the classical dynamics using the technique of Poincaré surfaces of section reveals that the motion is, in fact, extremely regular throughout the regime considered by Chaudhuri and Ray. Implications are considered.

PACS number(s): 05.45.+b

The general question of the effects of Kolmogorov-Arnold-Moser barriers and classical chaos on quantum tunneling rates is a problem of some current interest [1–3]. Lin and Ballentine [2], e.g., have shown that tunneling rates between disjoint regular regions of phase space can be enhanced significantly by an external driving field. They also noted an extreme sensitivity of tunneling rates as external parameters were varied. In a related computation for the same system Farrelly and Milligan [3] demonstrated that selective suppression of tunneling could be achieved by using a second external driving field. In a recent paper, Chaudhuri and Ray [1] studied tunneling in a two degree of freedom double well potential. They apparently discovered a clear correlation between the onset of classical chaos and a qualitative change in the tunneling rate as a function of a coupling parameter. Previous studies have failed to uncover a clear signature of classical chaos on tunneling behavior, and, consequently, the findings of Chaudhuri and Ray [1] are worthy of further investigation.

Chaudhuri and Ray [1] studied the two degree of freedom Hamiltonian,

$$H = \frac{p_q^2 + p_x^2}{2} + V_q(q) + V_x(x) + V_c(x,q),$$

where V_q is a quartic double well potential

$$V_q = q^4/10 - q^2/2,$$

V_x is a harmonic oscillator,

$$V_x = \Omega^2 x^2/2,$$

and the coupling potential $V_c = -k q x$. We consider only $\Omega = 1$ which is the principal case studied in Ref. [1]. The minima for the potential in this case occur at

$$q = \pm \left[\frac{5(1+k^2)}{2} \right]^{1/2}, \quad x = \pm k \left[\frac{5(1+k^2)}{2} \right]^{1/2},$$

while the barrier maximum is at $q = 0$, $x = 0$ for all k. This type of Hamiltonian has been studied extensively in chemical physics; Makri and Miller [4] employed a similar Hamiltonian in their study of energy splittings in hydrogen atom transfer processes and subsequently, Rom, Moiseyev, and Lefebvre [5] used a time independent complex coordinate method (similar to that developed by Moiseyev et al. [6]) to study tunneling rates as a function of the coupling strength. Importantly, all of these studies revealed that tunneling probabilities (as evidenced by level splittings) decreased as the coupling increased. In the present example this is due, in part, to the increase in the distance between the two potential minima for nonzero values of k. Using Melnikov's method, Chaudhuri and Ray established that H is nonintegrable and further, claimed that the onset of global chaos occurs at $k = 0.00066$ for $\Omega = 1$. Their conclusion was based on a computation of Lyapunov exponents, which is certainly an acceptable means of establishing when and if a transition to chaos occurs. However, a simpler alternative, at least in two degree of freedom systems, is to compute Poincaré surfaces of section (SOS) which provide a more pictorial view of the global structure of phase space. The results presented in Ref. [1] are sufficiently intriguing to warrant examination of Poincaré SOS in the regime where the change in tunneling rate is reported. In their paper Chaudhuri and Ray [1] do not provide the energy range in which they computed Lyapunov exponents, but they do state that their initial conditions were such that
to find an equivalent level of chaos for smaller values of \(k \)
simply by increasing the energy further. This implies that
the correlation between the onset of chaos and a change in the
tunneling rate is at best ambiguous. The chaotic threshold for \(E = 0 \)
appears to be at \(k \approx 0.027 \) although widespread chaos does not set in until \(k \approx 0.1 \) as
evidenced by Fig. 2.

Also puzzling are Figs. 1(a)–1(c) in Ref. [1]. These
figures supposedly show that "as \(k \) increases, the pattern
of complexity in the wave form changes very sharply."
In fact, Figs. 1(a) and 1(b) of Ref. [1] appear to be identical
despite the fact that Fig. 1(b) corresponds to

FIG. 1. Composite Poincaré surface of section obtained by
integration of several different trajectories for the Hamiltonian
(1). The SOS is defined by \(x = 0, P_x > 0 \) and the parameters used
were \(k = 0.00066 \) and \(E = 0 \).

at time \(t = 0, q = 0.1, p_q = 0.0 \). Assuming \(x = p_x = 0 \) this
gives an energy, \(E = -0.00499 \), which is rather close to
the top of the barrier, and this is precisely the energy
range where a chaotic separatrix layer is expected to
form. We considered energies in the range
\(-0.005 < E < 0 \) and a typical SOS is shown in Fig. 1. In
no case could we locate chaotic motion for the relatively
small \(k \) values used in Ref. [1]. Chaudhuri and Ray [7]
later stated that they chose initial conditions corresponding
to an energy \(E = 1.11991 \), which is well above the
saddle in the potential. The particular initial condition
they cite is completely regular. However, the level of
chaos at this energy for \(k = 0.00066 \) is minimal. It is
unclear what the relevance is, of chaos at this high energy,
to tunneling through the barrier: the lowest lying state in
the potential lies below the saddle. Further, it is possible

FIG. 2. Same as Fig. 1 but for \(k = 0.1 \).

FIG. 3. Tunneling splitting of the ground state (\(\Delta E \)) versus
\(k^2 \) over two different ranges of \(k \) (see Ref. [4]); (a) contains
\(k = 0.00066 \) and (b) contains \(k \) values for which widespread
chaos occurs. \(E_0 \) is the splitting when \(k = 0 \).
$k = 0.00066$, the value at which global chaos is claimed to occur. The wave form in Fig. 1(c) is certainly different from 1(a) and 1(b) but all three figures seem to be quasi-periodic.

The reader might legitimately ask why a significant change in the tunneling rate should occur at $k = 0.00066$. To study this issue further, we calculated the ground state splitting of the quantum eigenvalues of H using a basis of 400 harmonic oscillator functions. This basis is adequate to converge the eigenvalues and eigensplittings [4]. The double well potential V_x supports only one pair of states below the barrier top. Tunneling splittings for the lowest energy doublet are shown in Fig. 3 over two ranges of k values; one spanning the value $k = 0.00066$ and the other the actual k value for which significant chaos is visible in the SOS. In both cases the splitting decreases sharply as the coupling parameter is increased. This can be explained simply by noting that as k increases the distance between the two minima also increases. Our findings are in excellent qualitative agreement with the results of Makri and Miller [4] and conflict with the statements in Ref. [1] that, (i) the tunneling probability increases with coupling, (ii) the rate of change of the ground state tunneling probability changes dramatically in the vicinity of $k = 0.00066$, and, (iii) the ground state tunneling rate changes significantly as the transition to global classical chaos occurs.

This work has been supported, in part, by a grant from the Petroleum Research Fund, administered by the American Chemical Society, and by the National Science Foundation through a grant for the Institute for Theoretical Atomic and Molecular Physics at Harvard University and the Harvard-Smithsonian Astrophysical Observatory.