Math 316 Hwk 1

Problem 1. Assume that \(\{ v_1, v_2, \ldots, v_n \} \) spans the vector space \(V \), and let \(v \) be any other vector in \(V \). Show that \(\{ v, v_1, v_2, \ldots, v_n \} \) is linearly dependent.

Problem 2. Let \(x_1, x_2, \ldots, x_k \) be linearly independent vectors in \(\mathbb{R}^n \), and let \(A \) be a nonsingular \(n \times n \) matrix. Define \(y_i = Ax_i \) for \(i = 1, \ldots, k \). Show that \(y_1, y_2, \ldots, y_k \) are linearly independent.

Problem 3. Let \(X \) be a subspace of \(W \) and \(L : V \rightarrow W \) be a linear transformation. The preimage of \(X \), denoted \(L^{-1}(X) \), is defined by

\[
L^{-1}(X) = \{ v \in V \mid L(v) \in X \}.
\]

Prove that \(L^{-1}(X) \) is a subspace of \(V \).

Problem 4. Prove that the \(\ell^p \) norms satisfy the following inequalities:

(a). \(\| x \|_2 \leq \| x \|_1 \leq \sqrt{n} \| x \|_2 \).

(b). \(\| x \|_\infty \leq \| x \|_2 \leq \sqrt{n} \| x \|_\infty \).

Hint: Use the Cauchy-Schwarz inequality.

Problem 5. Let \(d(x, y) \) be a metric on a vector space \(V \). Show that

\[
\rho(x, y) = \frac{d(x, y)}{1 + d(x, y)}
\]

is also a metric.

Problem 6. Let \(V, W, X \) be vector spaces. Assume that \(L : V \rightarrow W \) and \(M : W \rightarrow X \) are linear transformations. Prove that \(M \circ L : V \rightarrow X \) is a linear transformation.

Problem 7. A set \(C \subset \mathbb{R}^n \) is convex if for each \(x, y \in C \), we have that \(\lambda x + (1 - \lambda)y \in C \), whenever \(0 \leq \lambda \leq 1 \).

(a). Give the geometric interpretation of a convex set.

(b). Provide an example of a set that is convex and one that isn’t.
Problem 8. The convex hull of $S \subset \mathbb{R}^n$, denoted $\text{co}(S)$, is the set of all convex combinations of elements of S, that is, the set of all linear combinations

$$a_1x_1 + \cdots + a_nx_n$$

such that $a_1 + \cdots + a_n = 1$, each $a_j \geq 0$, and each $x_j \in S$, $j = 1, \ldots, n$, $n \in \mathbb{N}$. Prove that a convex set C contains every convex combination of its elements, or in other words $\text{co}(C) \subset C$.

Problem 9. Let $\{C_\alpha\}_{\alpha \in J}$ be a collection of convex sets for some indexing set J. Prove that $\bigcap_{\alpha \in J} C_\alpha$ is convex.

Problem 10. Let $S \subset \mathbb{R}^n$. Prove that $\text{co}(S)$ is equal to the intersection of all convex sets containing S.