(1) If \((n, e) = (1484884039, 61229153)\), factor \(n\) using the low decryption exponent continued fraction attack.

(2) Use the continued fraction attack to find the decryption exponent for the public key \((n, e) = (60842791409, 50073749237)\).

(3) (Page 194, problem 19) Let \(n = pq\) be a product of two distinct primes.

 (a) Let \(m\) be a multiple of \(\phi(n)\). Show that if \(\gcd(a, n) = 1\), then \(a^m \equiv 1 \pmod{p}\) and \(\pmod{q}\).

 (b) For the same \(m\), let \(a\) be an arbitrary integer \(\pmod{n}\), so that possibly \(\gcd(a, n) \neq 1\). Show that \(a^{m+1} \equiv a \pmod{p}\) and \(\pmod{q}\).

 (c) Let \(e\) and \(d\) be encryption and decryption exponents for RSA with modulus \(n\). Show that \(a^{ed} \equiv a \pmod{n}\) for all \(a\). This shows that we do not need to assume \(\gcd(a, n) = 1\) for RSA to work.

 (d) If \(p\) and \(q\) are large, why is it likely that \(\gcd(a, n) = 1\) for a randomly chosen \(a\)?