This list is not guaranteed to be complete. Testing center calculators may be used on the exam.

Definitions/Concepts to know:

1. Chinese Remainder Theorem
2. Fast modular exponentiation
3. Fermat’s Little Theorem
4. Euler phi function
5. Euler’s theorem
6. Primitive roots mod p
7. Square roots mod n
8. Legendre and Jacobi symbols
9. Quadratic reciprocity
10. Continued fractions
11. RSA algorithm
12. Continued fraction low exponent attack on RSA
13. Short plaintext attacks
14. Fermat primality test
15. Miller-Rabin primality test
16. Solovay-Strassen primality test
17. Fermat factorization
18. Pollard rho factorization algorithm
19. Pollard p-1 factorization algorithm
20. Quadratic sieve
21. Public key cryptosystems
22. One-way functions, trapdoors
23. Discrete logarithms
24. Pohlig-Hellman algorithm
25. Baby step, giant step algorithm
26. Pollard rho algorithm for discrete logs
27. Diffie-Hellman key exchange
28. ElGamal cryptosystem
29. Hash functions
30. Birthday attacks
31. Encryption with hash functions
32. Digital signatures (RSA, ElGamal)
33. Secret sharing, threshold schemes

Examples of problems you should be able to do:

1. Calculate Jacobi symbols
2. Calculate exponentials (modulo n)
3. Find square roots of a number (modulo n)
4. Encrypt or decrypt RSA and ElGamal messages, given appropriate public or private keys
5. Use principles and algorithms learned in class to test for primality
6. Use principles and algorithms learned in class to factor integers
7. Find simple discrete logarithms
8. Sign documents using RSA or ElGamal
9. Find the shared secret in a Shamir threshold scheme
10. Describe strengths, weaknesses, and attacks for algorithms we have studied in class
11. Given a cryptosystem that is similar (but not identical) to those we have studied in class, evaluate its weaknesses; for example, is it susceptible to birthday attacks?

Remember that the learning outcomes for the course state that students “should gain an understanding of [the core] topics. In particular this includes knowing the definitions, being familiar with standard examples, and being able to solve mathematical and algorithmic problems by directly using the material taught in the course.”