(1) Use the Baby Step, Giant Step method to compute \(L_3(11) \) for \(p = 401 \). Show your work.

(2) Use the Pohlig-Hellman algorithm to compute \(L_2(28) \) for \(p = 37 \). Show your work.

(3) (Page 216, problem 12) Consider the following Baby Step, Giant Step attack on RSA, with public modulus \(n \). Eve knows a plaintext \(m \) and a ciphertext \(c \). She chooses \(N^2 \geq n \) and makes two lists: The first list is \(c^j \pmod{n} \) for \(0 \leq j < N \). The second list is \(mc^{-Nk} \pmod{n} \) for \(0 \leq k < N \).

(a) Why is there always a match between the two lists, and how does a match allow Eve to find the decryption exponent \(d \)?

(b) Your answer to the first part may be partly false. What Eve has really found is an exponent \(d \) such that \(c^d \equiv m \pmod{n} \). Give an example of a plaintext-ciphertext pair where the \(d \) you find is not the decryption exponent. (Usually \(d \) is very close to being the correct decryption exponent.)

(c) Why is this not a useful attack on RSA? (Hint: How long are the lists? Compare to trial division.)