QUESTION 1.

(a) Show that \(\sqrt{3} \) is irrational. \hspace{1cm} (10 marks)

Proof. Suppose that \(\sqrt{3} \) is rational and \(\sqrt{3} = p/q \) with integers \(p \) and \(q \) not both divisible by 3. We get the relation

\[p^2 = 3q^2 \]

from which we infer that \(p^2 \) is divisible by 3. Hence \(p \) itself is divisible by 3, as 3 is a prime number and \(p = 3k \) for some integer \(k \). Therefore, we must have

\[9k^2 = 3q^2 \]

which yields \(3k^2 = q^2 \)

and \(q^2 \) is a multiple of 3. Now 3 must also divide \(q \). This is a contradiction as we assumed that \(p \) and \(q \) are not both divisible by 3. \(\square \)

(b) Let \(\{p_n\} \) be a sequence in a metric space. Give the definition of the convergence of this sequence. \hspace{1cm} (5 marks)

The sequence \(\{p_n\} \) is said to converge if there exists a points \(p \) in the metric spaces with the following property. For \(\varepsilon > 0 \), there exists a natural number \(N \) such that if \(n \geq N \), then \(d(p_n, p) < \varepsilon \).

(c) Show that the base of the natural logarithm, \(e \) as defined below, is irrational. You may assume the sequence converges.

\[e = \lim_{n \to \infty} \left(\frac{1}{0!} + \frac{1}{1!} + \frac{1}{2!} + \cdots + \frac{1}{n!} \right). \]

\hspace{1cm} (15 marks)

Proof. Let

\[e_n = \frac{1}{0!} + \frac{1}{1!} + \frac{1}{2!} + \cdots + \frac{1}{n!}. \]

We then have, if \(n \) is a natural number,

\[0 < e - e_n = \lim_{N \to \infty} \left(\frac{1}{(n+1)!} + \frac{1}{(n+2)!} + \frac{1}{(n+3)!} + \cdots + \frac{1}{(n+N)!} \right) \]

\[= \frac{1}{(n+1)!} \lim_{N \to \infty} \left(1 + \frac{1}{(n+1)!} + \frac{1}{(n+2)(n+3)} + \cdots + \frac{1}{(n+2)(n+3)\cdots(n+N)} \right) \]

\[\leq \frac{1}{(n+1)!} \lim_{N \to \infty} \left(1 + \frac{1}{(n+1)!} + \frac{1}{(n+1)^2} + \cdots + \frac{1}{(n+2)^{N-1}} \right) \]

\[= \frac{1}{(n+1)!} \lim_{N \to \infty} \frac{1 - \left(\frac{1}{n+1} \right)^N}{1 - \frac{1}{n+1}} = \frac{1}{(n+1)!} \frac{n+1}{n} = \frac{1}{n \times n!}. \]

Collecting this information, we get

\[0 < e - e_n < \frac{1}{n \times n!}. \]

Date: 13 September 2007.
Now if e is a rational number, then $e = p/q$ with natural numbers p and q. We have, from (1),

$$0 < e - e_q < \frac{1}{q \times q!} \quad \text{which gives } 0 < q!(e - e_q) < \frac{1}{q}.$$

We note here that $e \times q!$ is certainly a natural number and so is $q! \times e_q = q! \times \left(\frac{1}{0!} + \frac{1}{1!} + \frac{1}{2!} + \cdots + \frac{1}{q!}\right)$.

Hence $q!(e - e_q)$ is the difference between two natural numbers and hence an integer. But this quantity lies strictly between zero and one as in shown in (2) which is certainly an absurdity. Hence e must be irrational.

\end{proof}

Total: 30 marks

QUESTION 2.

(i) Define the Cantor set. (7 marks)

Let

$$E_n = \bigcup_{k=1}^{3^n-1} \left[k \times 3^{-n}, k + 1 \times 3^{-n} \right].$$

The Cantor set, E, is defined to be

$$E = \bigcap_{n=1}^{\infty} E_n.$$

(ii) Show that the Cantor set is perfect. (13 marks)

\begin{proof}
Each E_n is a finite union of closed intervals and hence closed. E is an intersection of closed sets and hence is also closed. If $x \in E$, then $x \in E_n$ for all n. Therefore, let I_n be the closed interval of E_n such that $x \in I_n$ and let x_n be the endpoint of I_n with $x_n \neq x$.

Note that I_n is an interval of length 3^{-n}. Hence we have

$$|x - x_n| < \frac{1}{3^n}.$$

We certainly have $x_n \neq x$ and the size of their difference can be made smaller than any $\epsilon > 0$ by taking n large enough, larger than $-\log_3 \left(\min \left\{ \epsilon, \frac{1}{2} \right\} \right)$.

\end{proof}

Total: 20 marks

QUESTION 3.

Let $s_1 = \sqrt{2}$ and $s_{n+1} = \sqrt{2 + s_n}$ for $n = 1, 2, 3, \ldots$.

(i) Show that $\{s_n\}$ is an monotonically increasing sequence. (Hint: Use induction.) (5 marks)

\begin{proof}
We need to show $s_{n+1} \geq s_n$ for all n. This is easy for $n = 1$ as

$$s_2 = \sqrt{2 + \sqrt{2}} \geq \sqrt{2} = s_1.$$

Assuming the contention holds for $n = k - 1$. Then we have

$$s_{k+1} = \sqrt{2 + s_k} \geq \sqrt{2 + s_{k-1}} = s_k$$

where the inequality above follows from the induction hypothesis. The proof is completed.

\end{proof}
(ii) Show that \(s_n \leq 2 \) for all \(n \). (Hint: Use induction again.) (5 marks)

Proof. Once again, the case for \(n = 1 \) is easily true as \(s_1 = \sqrt{2} \leq 2 \). Assuming the contention hold for \(n = k - 1 \), then
\[
s_k = \sqrt{2 + s_{k-1}} \leq \sqrt{2 + 2} = 2,
\]
where the inequality above follows from the induction hypothesis. \(\square \)

(iii) Now does the sequence converge at all? Compute this limit.

Hint: If the limit is \(L \), then taking \(n \) to \(\infty \) on both sides of
\[
s_{n+1} = \sqrt{2 + s_n}
\]
gives the relation
\[
L = \sqrt{2 + L}.
\]

Proof. Following the hint, we have the limit \(L \) is a solution to the equation \(L^2 - L - 2 = 0 \). This equation has solutions \(L = 2 \) and \(L = -1 \). It is obvious that the limit in question must be non-negative. Hence it must be that
\[
\lim_{n \to \infty} s_n = 2.
\]
\(\square \)

(10 marks)

Total: 20 marks

QUESTION 4.

(a) Let \(f \) be a uniformly continuous function from a metric space \(X \) to another metric space \(Y \) and \(g \) a uniformly continuous function from the metric space \(Y \) to another metric space \(Z \). Show that \(g \circ f \) is a uniformly continuous function from \(X \) to \(Z \). (10 marks)

Proof. Let \(\varepsilon > 0 \) be given. Since \(g \) is uniformly continuous, then there exists \(\delta_1 > 0 \) such that
\[
d_Z(g((y_1), g(y_2))) < \varepsilon
\]
so long as \(d_Y(y_1, y_2) \leq \delta_1 \). Since now \(f \) is also uniformly continuous, then there exists \(\delta > 0 \) such that
\[
d_Y(f(x_1), f(x_2)) < \delta_1
\]
provided that \(d(x_1, x_2) \leq \delta \). From these conditions, we infer that if the distance between \(x_1 \) and \(x_2 \) in \(X \) does not exceed \(\delta \), then we will have
\[
d_Z(g(f(x_1)), g(f(x_2))) < \varepsilon.
\]
This shows that \(g \circ f \) is a uniformly continuous function from \(X \) to \(Z \). \(\square \)

(b) Consider function \(f \) defined on the real numbers as
\[
f(x) = \begin{cases} 0, & \text{if } x \text{ is irrational;} \\ 1/n, & \text{if } x = m/n \text{ with } m, n \text{ in lowest terms}. \end{cases}
\]
Show that \(f \) is continuous at all irrational numbers. (10 marks)
Proof. Let \(x_0 \) be an irrational real number and an \(\varepsilon > 0 \) be given. Let \(N \) be large enough such that \(N \times \varepsilon > 1 \) or equivalently \(1/N < \varepsilon \). Now let \(q \) be closest rational number to \(x_0 \) among the rational numbers with denominators not exceeding \(N \), when written in lowest terms. Such a \(q \) certainly can be found as, there are only finitely many rational numbers with denominators not exceeding \(N \) in the interval \([x_0 - 1, x_0 + 1]\). Note that \(|q - x_0| \) cannot be zero as \(x_0 \) itself is not a rational number. Let \[\delta = \frac{1}{2}|q - x_0|. \]

By this construction, if \(r = s/t \) is a rational number with integers \(s \) and \(t \) in lowest terms and \(|r - x_0| \leq \delta \), then \(t > N \). Therefore \[f(r) = \frac{1}{t} < \frac{1}{N} < \varepsilon. \]

But if \(v \) is irrational, \(f(v) = 0 \). Summarizing, for any \(\varepsilon > 0 \), there can be found a \(\delta \) such that \[|f(x) - f(x_0)| = |f(x) - 0| = |f(x)| < \varepsilon, \]
provided \(|x - x_0| \leq \delta \).

This is to say that \(f \) is continuous at the arbitrary irrational number \(x_0 \) and this completes the proof. \(\square \)

(c) Suppose that \(f \) is a real-valued function on \((−\infty, \infty)\). \(x \) is called a fixed point of \(f \) if \(f(x) = x \). Show that if \(f \) is differentiable on \((−\infty, \infty)\) and \(f'(t) \neq 1 \) for all \(t \). Prove that \(f \) has at most one fixed point.

Proof. Suppose that \(x_1 \) and \(x_2 \) are two fixed points of \(f \) with \(x_1 \neq x_2 \) and consider \(g(x) = f(x) - x \). Clearly \(g \) is also differentiable on \((−\infty, \infty)\) and \(g(x_1) = g(x_2) = 0 \). By Rolle’s theorem, there must be an \(x_3 \) which lies between \(x_1 \) and \(x_2 \) with \(g'(x_3) = 0 \). However, \(g'(x) = f'(x) - 1 \) and hence \(g'(x) \neq 0 \) for all \(x \). Therefore, there can be at most one fixed point of \(f \). This completes the proof. \(\square \)

(10 marks)

Total: 30 marks