Quantum Rings of Singularities

Natalie Wilde

March 14, 2008
Introduction

Background
Background

- Definitions: singularity, quasi-homogeneous polynomial, symmetry group
Introduction

Background

- Definitions: singularity, quasi-homogeneous polynomial, symmetry group
- Mirror Symmetry Conjecture.
Introduction

Background

- Definitions: singularity, quasi-homogeneous polynomial, symmetry group
- Mirror Symmetry Conjecture.

Theory
Introduction

Background

- Definitions: singularity, quasi-homogeneous polynomial, symmetry group
- Mirror Symmetry Conjecture.

Theory

- Vector space structure.
Introduction

Background

▶ Definitions: singularity, quasi-homogeneous polynomial, symmetry group
▶ Mirror Symmetry Conjecture.

Theory

▶ Vector space structure.
 ▶ Singularity Z_{11}
Why do we care about this?

Singularity Theory appears in physics with applications to String Theory. Landau-Ginzburg model associated with a singularity. However...

Initial interest: Solving the Witten equation:

\[\bar{\partial} u_i + \frac{\partial W}{\partial u_i} = 0 \]

\(W \) is a quasi-homogeneous polynomial

\(u_i \) is the solution that we are looking for satisfying the Witten Equation
Singularity Theory appears in physics with applications to String Theory.
Singularity Theory appears in physics with applications to String Theory.

- *Landau-Ginzburg model* associated with a singularity.
Why do we care about this?

Singularity Theory appears in physics with applications to String Theory.

▶ *Landau-Ginzburg model* associated with a singularity.

However...
Why do we care about this?

Singularity Theory appears in physics with applications to String Theory.

- Landau-Ginzburg model associated with a singularity.

However...

Initial interest:
Why do we care about this?

Singularity Theory appears in physics with applications to String Theory.
- *Landau-Ginzburg model* associated with a singularity.

However...

Initial interest: Solving the *Witten equation*:
Why do we care about this?

Singularity Theory appears in physics with applications to String Theory.

- *Landau-Ginzburg model* associated with a singularity.

However...

Initial interest: Solving the *Witten equation*:

\[
\bar{\partial} u_i + \frac{\partial W}{\partial u_i} = 0
\]
Why do we care about this?

Singularity Theory appears in physics with applications to String Theory.

- Landau-Ginzburg model associated with a singularity.

However...

Initial interest: Solving the *Witten equation*:

\[
\bar{\partial} u_i + \frac{\partial W}{\partial u_i} = 0
\]

W is a quasi-homogeneous polynomial

*u*_i is the solution that we are looking for satisfying the Witten Equation
What is a singularity?

A point \((a_1,...,a_n)\) on a curve \(f(x_1,...,x_n) = 0\) is singular if the partial derivatives of \(f\) with respect to each \(x_j\) are zero at the point \((a_1,...,a_n)\).

Example
\[x^3 - x^2 + y^2 = 0\] where \[3x^2 - 2x, 2y\] are the partial derivatives of \(f\) with respect to \(x\) and \(y\), respectively.
What is a singularity?

A point \((a_1, \ldots, a_n)\) on a curve \(f(x_1, \ldots, x_n) = 0\) is singular if the partial derivatives of \(f\) with respect to each \(x_j\) are zero at the point \((a_1, \ldots, a_n)\).
What is a singularity?

A point \((a_1, \ldots, a_n)\) on a curve \(f(x_1, \ldots, x_n) = 0\) is singular if the partial derivatives of \(f\) with respect to each \(x_j\) are zero at the point \((a_1, \ldots, a_n)\).

Example \(x^3 - x^2 + y^2 = 0\) where \(0^3 - 0^2 + 0^2 = 0\)
What is a singularity?

A point \((a_1, \ldots, a_n)\) on a curve \(f(x_1, \ldots, x_n) = 0\) is singular if the partial derivatives of \(f\) with respect to each \(x_j\) are zero at the point \((a_1, \ldots, a_n)\).

Example \(x^3 - x^2 + y^2 = 0\) where \(0^3 - 0^2 + 0^2 = 0\)
What is a singularity?

A point \((a_1, \ldots, a_n)\) on a curve \(f(x_1, \ldots, x_n) = 0\) is singular if the partial derivatives of \(f\) with respect to each \(x_j\) are zero at the point \((a_1, \ldots, a_n)\).

Example \(x^3 - x^2 + y^2 = 0\) where \(0^3 - 0^2 + 0^2 = 0\)

\[
\frac{\partial f}{\partial x}(x, y) = 3x^2 - 2x, \quad \frac{\partial f}{\partial y}(x, y) = 2y
\]
Homogeneous vs. quasi-homogeneous polynomials

Homogeneous polynomial:
A polynomial where each term has the same total degree.

Example:
\[f(x, y) = x^2 + 2xy + y^2 \]

Quasi-homogeneous Polynomial (weighted homogeneous):
A polynomial \(W \in \mathbb{C}[x_1, \ldots, x_n] \) where there exist unique \(q_1, \ldots, q_n \in \mathbb{Q} > 0 \) such that for any \(\lambda \in \mathbb{C} \),
\[W(\lambda^{q_1}x_1, \ldots, \lambda^{q_n}x_n) = \lambda^{q_1+\ldots+q_n} W(x_1, \ldots, x_n) \]

Example:
\[Z_{11} : x^3y + y^5 + ax^4y = 1, q_y = \frac{1}{5}, q_x = \frac{4}{15} \]
\[(\lambda^{\frac{4}{15}}x)^3(\lambda^{\frac{1}{5}}y) + (\lambda^{\frac{1}{5}}y)^5 + a(\lambda^{\frac{4}{15}}x)^4(\lambda^{\frac{1}{5}}y) = \lambda x^3y + \lambda y^5 + \lambda^{\frac{16}{15}}axy \]
\(Z_{11} \) is not quasi-homogeneous unless \(a = 0 \).
Homogeneous vs. quasi-homogeneous polynomials

Homogeneous polynomial:

A polynomial where each term has the same total degree.

Example:

\[f(x, y) = x^2 + 2xy + y^2 \]

Quasi-homogeneous Polynomial (weighted homogeneous):

A polynomial \(W \in \mathbb{C}[x_1, \ldots, x_n] \) where there exist unique \(q_1, \ldots, q_n \in \mathbb{Q} > 0 \) such that for any \(\lambda \in \mathbb{C} \),

\[W(\lambda q_1 x_1, \ldots, \lambda q_n x_n) = \lambda W(x_1, \ldots, x_n) \]

Example:

\[Z_{11}: \quad x^3 y + y^5 + ax^4 y = 15, \quad q_y = 15, \quad q_x = 4 \]

\[(\lambda^{15} y)^3 (\lambda^{4} x) + (\lambda^{15} y)^5 + a (\lambda^{4} x)^4 y = \lambda x^3 y + \lambda y^5 + \lambda^{16} 15 ax^4 y = \lambda x^3 y + \lambda y^5 + \lambda^{16} 15 ax^4 y \]

\(Z_{11} \) is not quasi-homogeneous unless \(a = 0 \).
Homogeneous vs. quasi-homogeneous polynomials

Homogeneous polynomial: A polynomial where each term has the same total degree.

Example

\[f(x, y) = x^2 + 2xy + y^2\]

Quasi-homogeneous Polynomial (weighted homogeneous): A polynomial \(W \in \mathbb{C}[x_1, \ldots, x_n] \) where there exist unique \(q_1, \ldots, q_n \in \mathbb{Q} > 0\) such that for any \(\lambda \in \mathbb{C}\),

\[W(\lambda q_1 x_1, \ldots, \lambda q_n x_n) = \lambda W(x_1, \ldots, x_n)\]

Example

\[Z_{11} = x^3 y + y^5 + axy^4\]

\[q_y = \frac{1}{5}, \quad q_x = \frac{4}{15}\]

\[\lambda^4 \frac{1}{15} x^3 (\lambda \frac{1}{5} y) + (\lambda \frac{1}{5} y)^5 + a \lambda^4 \frac{4}{15} (\lambda \frac{1}{5} y)^4 = \lambda x^3 y + \lambda y^5 + \lambda^16 \frac{1}{15} axy^4\]

\(Z_{11}\) is not quasi-homogeneous unless \(a = 0\).
Homogeneous vs. quasi-homogeneous polynomials

Homogeneous polynomial: A polynomial where each term has the same total degree.

- Example: \(f(x, y) = x^2 + 2xy + y^2 \)
Homogeneous vs. quasi-homogeneous polynomials

Homogeneous polynomial: A polynomial where each term has the same total degree.

- Example: \(f(x, y) = x^2 + 2xy + y^2 \)

Quasi-homogeneous Polynomial
Homogeneous vs. quasi-homogeneous polynomials

Homogeneous polynomial: A polynomial where each term has the same total degree.

- **Example** $f(x, y) = x^2 + 2xy + y^2$

Quasi-homogeneous Polynomial *(weighted homogeneous)*:

$Z_{11}^1: x^3y + y^5 + ax^4y^4 = λ^{15}x^3(λ^{15}y) + (λ^{15}y)^5 + a(λ^{15}x)(λ^{15}y)^4 = λx^2y + λy^5 + λ^{16^{15}}axy^4$

Z_{11} is not quasi-homogeneous unless $a=0$.

Natalie Wilde

Quantum Rings of Singularities
Homogeneous vs. quasi-homogeneous polynomials

Homogeneous polynomial: A polynomial where each term has the same total degree.

- Example
 \[f(x, y) = x^2 + 2xy + y^2 \]

Quasi-homogeneous Polynomial (weighted homogeneous): A polynomial \(W \in \mathbb{C}[x_1, \ldots, x_n] \) where there exist unique \(q_1, \ldots, q_n \in \mathbb{Q}^{>0} \) such that for any \(\lambda \in \mathbb{C} \),

\[
W(\lambda^{q_1} x_1, \ldots, \lambda^{q_n} x_n) = \lambda W(x_1, \ldots, x_n)
\]

Z11 is not quasi-homogeneous unless \(a = 0 \).
Homogeneous vs. quasi-homogeneous polynomials

Homogeneous polynomial: A polynomial where each term has the same total degree.

- Example
 \[f(x, y) = x^2 + 2xy + y^2 \]

Quasi-homogeneous Polynomial (weighted homogeneous):
A polynomial \(W \in \mathbb{C}[x_1, \ldots, x_n] \) where there exist unique \(q_1, \ldots, q_n \in \mathbb{Q}^{>0} \) such that for any \(\lambda \in \mathbb{C} \),
\[W(\lambda^{q_1}x_1, \ldots, \lambda^{q_n}x_n) = \lambda W(x_1, \ldots, x_n) \]

- Example
 \[Z_{11} : x^3y + y^5 + axy^4 \]
Homogeneous vs. quasi-homogeneous polynomials

Homogeneous polynomial: A polynomial where each term has the same total degree.

- Example: \(f(x, y) = x^2 + 2xy + y^2 \)

Quasi-homogeneous Polynomial (weighted homogeneous): A polynomial \(W \in \mathbb{C}[x_1, \ldots, x_n] \) where there exist unique \(q_1, \ldots, q_n \in \mathbb{Q}^{>0} \) such that for any \(\lambda \in \mathbb{C} \),

\[
W(\lambda^{q_1}x_1, \ldots, \lambda^{q_n}x_n) = \lambda W(x_1, \ldots, x_n)
\]

- Example: \(Z_{11} : x^3y + y^5 + axy^4 \)

 - \(q_y = \frac{1}{5} \)
Homogeneous vs. quasi-homogeneous polynomials

Homogeneous polynomial: A polynomial where each term has the same total degree.

- Example

 \[f(x, y) = x^2 + 2xy + y^2 \]

Quasi-homogeneous Polynomial (weighted homogeneous): A polynomial \(W \in \mathbb{C}[x_1, \ldots, x_n] \) where there exist unique \(q_1, \ldots, q_n \in \mathbb{Q}^{>0} \) such that for any \(\lambda \in \mathbb{C} \),

 \[W(\lambda q_1 x_1, \ldots, \lambda q_n x_n) = \lambda W(x_1, \ldots, x_n) \]

- Example

 \[Z_{11} : x^3 y + y^5 + axy^4 \]

 \(q_y = \frac{1}{5}, \; q_x = \frac{4}{15} \)
Homogeneous polynomial: A polynomial where each term has the same total degree.

Example \(f(x, y) = x^2 + 2xy + y^2 \)

Quasi-homogeneous Polynomial (weighted homogeneous): A polynomial \(W \in \mathbb{C}[x_1, \ldots, x_n] \) where there exist unique \(q_1, \ldots, q_n \in \mathbb{Q}^{>0} \) such that for any \(\lambda \in \mathbb{C} \),
\[
W(\lambda^{q_1}x_1, \ldots, \lambda^{q_n}x_n) = \lambda W(x_1, \ldots, x_n)
\]

Example \(Z_{11} : x^3y + y^5 + axy^4 \)
\[
q_y = \frac{1}{5}, \quad q_x = \frac{4}{15}
\]
\[
(\lambda^{\frac{4}{15}}x)^3(\lambda^{\frac{1}{5}}y) + (\lambda^{\frac{1}{5}}y)^5 + a(\lambda^{\frac{4}{15}})(\lambda^{\frac{1}{5}})^4
\]
Homogeneous polynomial: A polynomial where each term has the same total degree.

- Example: \(f(x, y) = x^2 + 2xy + y^2 \)

Quasi-homogeneous Polynomial (weighted homogeneous): A polynomial \(W \in \mathbb{C}[x_1, \ldots, x_n] \) where there exist unique \(q_1, \ldots, q_n \in \mathbb{Q} > 0 \) such that for any \(\lambda \in \mathbb{C} \),

\[
W(\lambda^{q_1} x_1, \ldots, \lambda^{q_n} x_n) = \lambda W(x_1, \ldots, x_n)
\]

- Example: \(Z_{11} : x^3 y + y^5 + axy^4 \)

\[
q_y = \frac{1}{5}, \quad q_x = \frac{4}{15}
\]

\[
(\lambda^{\frac{4}{15}} x)^3 (\lambda^{\frac{1}{5}} y) + (\lambda^{\frac{1}{5}} y)^5 + a(\lambda^{\frac{4}{15}})(\lambda^{\frac{1}{5}})^4 = \lambda x^3 y + \lambda y^5 + \lambda^{\frac{16}{15}} axy^4
\]
Homogeneous vs. quasi-homogeneous polynomials

Homogeneous polynomial: A polynomial where each term has the same total degree.

▷ Example \[f(x, y) = x^2 + 2xy + y^2 \]

Quasi-homogeneous Polynomial (weighted homogeneous): A polynomial \(W \in \mathbb{C}[x_1, \ldots, x_n] \) where there exist unique \(q_1, \ldots, q_n \in \mathbb{Q}^>0 \) such that for any \(\lambda \in \mathbb{C} \),
\[
W(\lambda q_1 x_1, \ldots, \lambda q_n x_n) = \lambda W(x_1, \ldots, x_n)
\]

▷ Example \(Z_{11} : x^3 y + y^5 + axy^4 \)

\[
q_y = \frac{1}{5}, \ q_x = \frac{4}{15} \\
(\lambda^{\frac{4}{15}} x)^3(\lambda^{\frac{1}{5}} y) + (\lambda^{\frac{1}{5}} y)^5 + a(\lambda^{\frac{4}{15}})(\lambda^{\frac{1}{5}})^4 = \lambda x^3 y + \lambda y^5 + \lambda^{\frac{16}{15}} axy^4
\]

\(Z_{11} \) is not quasi-homogeneous unless \(a=0 \).
Symmetry Group

The Symmetry Group is defined to be $G = \langle J \rangle$.

Example:

\mathbb{Z}_{11}^2: $x^3 y^5 + y^5 x = 1^{15} = 3^{15}, \quad q x = 4^{15}$.

$J = \begin{pmatrix} e^{2\pi i q_{11}^4} & 0 \\ 0 & e^{2\pi i q_{11}^3} \end{pmatrix} = \begin{pmatrix} \xi_{11}^4 & 0 \\ 0 & \xi_{11}^3 \end{pmatrix}$.

Natalie Wilde
Quantum Rings of Singularities
The Symmetry Group is defined to be

\[G = \langle J \rangle \]

Example \(\mathbb{Z}_{11} \):

\[x^3 y^5 q = 1 \]

\[q x = 4 \]

\[J = \begin{pmatrix}
 e^{2\pi i q_1} & 0 \\
 \vdots & \ddots \\
 0 & e^{2\pi i q_n}
\end{pmatrix} = \begin{pmatrix}
 \xi & 0 \\
 0 & \xi^n
\end{pmatrix} \]
The Symmetry Group is defined to be $G = \langle J \rangle$
Symmetry Group

\[J = \begin{pmatrix} e^{2\pi i q_1} & 0 \\ \vdots & \ddots \\ 0 & e^{2\pi i q_n} \end{pmatrix} \]

The Symmetry Group is defined to be \(G = \langle J \rangle \)

Example

\[Z_{11} : x^3 y + y^5 \quad q_y = \frac{1}{5} = \frac{3}{15}, \quad q_x = \frac{4}{15} \]
The Symmetry Group is defined to be $G = \langle J \rangle$

Example

$Z_{11} : x^3 y + y^5 \quad q_y = \frac{1}{5} = \frac{3}{15}, \quad q_x = \frac{4}{15}$

$$J = \begin{pmatrix}
 e^{2\pi i \frac{4}{15}} & 0 \\
 0 & e^{2\pi i \frac{3}{15}}
\end{pmatrix} = \begin{pmatrix}
 \xi_{15}^4 & 0 \\
 0 & \xi_{15}^3
\end{pmatrix}$$
Mirror Symmetry Conjecture

Two models
1. Orbifold Landau-Ginzburg model
2. FJR model (Fan, Jarvis, Ruan)

Ruan's Mirror Symmetry Conjecture
If W is a singularity, the FJR model corresponding to W is isomorphic to the Orbifold Landau-Ginzburg model W.

The Witten's original conjecture of this symmetry for simple singularities has been proven (Fan, Jarvis, Ruan)
Mirror Symmetry Conjecture

Two models

1. Orbifold Landau-Ginzburg model
2. FJR model (Fan, Jarvis, Ruan)

Ruan's Mirror Symmetry Conjecture
If W is a singularity FJR model corresponding to W is isomorphic to Orbifold Landau-Ginzburg model W.

The Witten's original conjecture of this symmetry for simple singularities has been proven (Fan, Jarvis, Ruan)
Mirror Symmetry Conjecture

Two models

1. Orbifold Landau-Ginzburg model
Two models

1. Orbifold Landau-Ginzburg model
2. FJR model (Fan, Jarvis, Ruan)
Mirror Symmetry Conjecture

Two models

1. Orbifold Landau-Ginzburg model
2. FJR model (Fan, Jarvis, Ruan)

Ruan’s Mirror Symmetry Conjecture

If W is a singularity FJR model corresponding to W is isomorphic to Orbifold Landau-Ginzburg model W.
Two models

1. Orbifold Landau-Ginzburg model
2. FJR model (Fan, Jarvis, Ruan)

Ruan's Mirror Symmetry Conjecture

If W *is a singularity FJR model corresponding to W is isomorphic to Orbifold Landau-Ginzburg model W.

The Witten’s original conjecture of this symmetry for simple singularities has been proven (Fan, Jarvis, Ruan)
The Milnor ring of a singularity

For the duration of this consider $W(x_1, \ldots, x_n)$ to be a quasi-homogeneous polynomial with a singularity.

Milnor ring of W:

$$M_W = \mathbb{C}[x_1, \ldots, x_n] / (\partial W)$$

Example Z_{11}:

$$x^3y + y^5$$

$$M_{Z_{11}} = \mathbb{C}[x, y] / (3x^2y, x^3 + 5y^4)$$

Finding a basis by hand can be tedious. Even Merril wrote a code to find a basis for the Milnor ring.
The Milnor ring of a singularity

For the duration of this consider $W(x_1, \ldots, x_n)$ to be quasi-homogeneous polynomial with a singularity.
The Milnor ring of a singularity

For the duration of this consider $W(x_1, \ldots, x_n)$ to be quasi-homogeneous polynomial with a singularity.

Milnor ring of W

$$M_W = \mathbb{C}[x_1, \ldots, x_n]/(\partial W)$$
The Milnor ring of a singularity

For the duration of this consider $W(x_1, \ldots, x_n)$ to be quasi-homogeneous polynomial with a singularity.

Milnor ring of W

$$M_W = \mathbb{C}[x_1, \ldots, x_n]/(\partial W)$$

Example

$Z_{11} : x^3 y + y^5$
The Milnor ring of a singularity

For the duration of this consider $W(x_1, \ldots, x_n)$ to be quasi-homogeneous polynomial with a singularity.

Milnor ring of W

$$M_W = \mathbb{C}[x_1, \ldots, x_n]/(\partial W)$$

Example

$$Z_{11} : x^3y + y^5$$

$$M_{Z_{11}} = \mathbb{C}[x, y]/(3x^2y, x^3 + 5y^4)$$
For the duration of this consider $W(x_1, \ldots, x_n)$ to be quasi-homogeneous polynomial with a singularity.

Milnor ring of W

$$M_W = \mathbb{C}[x_1, \ldots, x_n]/(\partial W)$$

Example

$$Z_{11} : x^3y + y^5$$

$$M_{Z_{11}} = \mathbb{C}[x, y]/(3x^2y, x^3 + 5y^4)$$

Finding a basis by hand can be tedious. Even Merril wrote a code to find a basis for the Milnor ring.
First, determine the vector space structure of H. Recall that $J = \begin{pmatrix} e^{2\pi i q_1} & 0 & \cdots & 0 \\ e^{2\pi i q_2} & e^{2\pi i q_1} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & e^{2\pi i q_n} \end{pmatrix}$. The J_k action fixes subspaces of \mathbb{C}^n. Consider the Milnor ring of W restricted to these subspaces. The invariants of these Milnor rings under the action of J form a basis for the vector space.
First, determine the vector space structure of \mathcal{H}_W.

Recall that

$$J = \begin{pmatrix} e^{2\pi i q_1} & 0 & \cdots & 0 \\ 0 & e^{2\pi i q_2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & e^{2\pi i q_n} \end{pmatrix}.$$

J action fixes subspaces of \mathbb{C}^n.

Consider Milnor ring of W restricted to these subspaces.

The invariants of these Milnor rings under the action of J form a basis for the vector space.
First, determine the vector space structure of \mathcal{H}_W

Recall that

$$J = \begin{pmatrix}
 e^{2\pi i q_1} & 0 \\
 \vdots & \ddots \\
 0 & \cdots & e^{2\pi i q_n}
\end{pmatrix}$$
First, determine the vector space structure of \mathcal{H}_W
Recall that

$$J = \begin{pmatrix}
 e^{2\pi i q_1} & 0 \\
 \vdots & \ddots \\
 0 & e^{2\pi i q_n}
\end{pmatrix}$$

J^k action fixes subspaces of \mathbb{C}^n.

Natalie Wilde
Quantum Rings of Singularities
First, determine the vector space structure of \mathcal{H}_W

Recall that

$$J = \begin{pmatrix}
 e^{2\pi i q_1} & 0 \\
 & \ddots & \ddots \\
 0 & & e^{2\pi i q_n}
\end{pmatrix}$$

- J^k action fixes subspaces of \mathbb{C}^n.
- Consider Milnor ring of W restricted to these subspaces.
First, determine the vector space structure of \mathcal{H}_W
Recall that
\[
J = \begin{pmatrix}
e^{2\pi i q_1} & 0 \\
\cdot & \\
0 & e^{2\pi i q_n}
\end{pmatrix}
\]

- J^k action fixes subspaces of \mathbb{C}^n.
- Consider Milnor ring of W restricted to these subspaces
- The invariants of these Milnor rings under the action of J
 form a basis for the vector space.
Vector space structure of Z_{11}

Recall Z_{11}:

\[x^3 y + y^5, \]

\[q_x = 4^{15}, \quad q_y = 3^{15}, \]

\[J = \left(\begin{array}{ccc} e^{8\pi i} & 0 \cr 0 & e^{6\pi i} \end{array} \right) \]

The J_k action for $0 \leq k < 15$ fixes subspaces of C^2:

\[
\text{Fix}(J_k) = \begin{cases}
C^2_k = 0 & \text{else} \\
C_y^k = 5, 10 & \text{other wise}
\end{cases}
\]

$Z_{11} \mid C^2 = Z_{11}$, $Z_{11} \mid C_y = y^5$, and $Z_{11} \mid \{0\} = \{0\}$.

Natalie Wilde
Quantum Rings of Singularities
Recall $Z_{11} : x^3 y + y^5$, $q_x = \frac{4}{15}$, $q_y = \frac{3}{15}$, $J = \begin{pmatrix} e^{\frac{8\pi i}{15}} & 0 \\ 0 & e^{\frac{6\pi i}{15}} \end{pmatrix}$
Vector space structure of Z_{11}

Recall $Z_{11}: x^3 y + y^5$, $q_x = \frac{4}{15}$, $q_y = \frac{3}{15}$, $J = \left(\begin{array}{cc} e^{\frac{8\pi i}{15}} & 0 \\ 0 & e^{\frac{6\pi i}{15}} \end{array} \right)$

The J^k action for $0 \leq k < 15$ fixes subspaces of \mathbb{C}^2
Recall \mathbb{Z}_{11}: $x^3y + y^5$, $q_x = \frac{4}{15}$, $q_y = \frac{3}{15}$, $J = \begin{pmatrix} e^{\frac{8\pi i}{15}} & 0 \\ 0 & e^{\frac{6\pi i}{15}} \end{pmatrix}$

The J^k action for $0 \leq k < 15$ fixes subspaces of \mathbb{C}^2

$$\text{Fix}(J^k) = \begin{cases} \mathbb{C}^2 & k = 0 \\ \mathbb{C}_y & k = 5, 10 \\ \{0\} & \text{otherwise} \end{cases}$$
Recall $Z_{11} : x^3 y + y^5$, $q_x = \frac{4}{15}$, $q_y = \frac{3}{15}$, $J = \begin{pmatrix} e^{\frac{8\pi i}{15}} & 0 \\ 0 & e^{\frac{6\pi i}{15}} \end{pmatrix}$

The J^k action for $0 \leq k < 15$ fixes subspaces of \mathbb{C}^2

$$\text{Fix}(J^k) = \begin{cases}
\mathbb{C}^2 & k = 0 \\
\mathbb{C}_y & k = 5, 10 \\
\{0\} & \text{otherwise}
\end{cases}$$

$Z_{11}|_{\mathbb{C}^2} = Z_{11}$, $Z_{11}|_{\mathbb{C}_y} = y^5$, and $Z_{11}|_{\{0\}} = \{0\}$
Vector space structure of Z_{11} continued

\[Z_{11}|_{\mathbb{C}^2} = Z_{11}, \quad Z_{11}|_{\mathbb{C}y} = y^5, \text{ and } Z_{11}|_{\{0\}} = \{0\} \]
Vector space structure of Z_{11} continued

$Z_{11}|_{\mathbb{C}^2} = Z_{11}$, $Z_{11}|_{\mathbb{C}^y} = y^5$, and $Z_{11}|_\{0\} = \{0\}$

For a basis of the vector space consider
Vector space structure of \mathbb{Z}_{11} continued

$\mathbb{Z}_{11}|_{\mathbb{C}^2} = \mathbb{Z}_{11}$, $\mathbb{Z}_{11}|_{\mathbb{C}^y} = y^5$, and $\mathbb{Z}_{11}|_{\{0\}} = \{0\}$

For a basis of the vector space consider

$$\begin{pmatrix} M_{\mathbb{Z}_{11}} e_0 \oplus M_{y^5} e_5 \oplus M_{y^5} e_{10} \bigoplus_{5 \nmid i} \mathbb{C} e_i \end{pmatrix} <J>$$
Vector space structure of Z_{11} continued

$Z_{11}|_{\mathbb{C}^2} = Z_{11}$, $Z_{11}|_{\mathbb{C}y} = y^5$, and $Z_{11}|_{\{0\}} = \{0\}$

For a basis of the vector space consider

$$
\begin{pmatrix}
M_{Z_{11}} e_0 \oplus M_{y^5} e_5 \oplus M_{y^5} e_{10} \bigoplus_{5 \nmid i} \mathbb{C} e_i
\end{pmatrix}^{<J>}
$$

$M_{Z_{11}} = \langle 1, x, x^2, x^3, x^4, y, y^2, y^3, xy, xy^2, xy^3 \rangle$

$M_{y^5} = \langle 1, y, y^2, y^3, y^4 \rangle$
Vector space structure of Z_{11} continued

$Z_{11}|_{\mathbb{C}^2} = Z_{11}$, $Z_{11}|_{\mathbb{C}^y} = y^5$, and $Z_{11}|_{\{0\}} = \{0\}$

For a basis of the vector space consider

$$
\left(M_{Z_{11}} e_0 \oplus M_{y^5} e_5 \oplus M_{y^5} e_{10} \bigoplus \mathbb{C} e_i \right)^{<J>}
$$

$M_{Z_{11}} = \langle 1, x, x^2, x^3, x^4, y, y^2, y^3, xy, xy^2, xy^3 \rangle$

$M_{y^5} = \langle 1, y, y^2, y^3, y^4 \rangle$

Invariant elements: $M_{Z_{11}}$ has x^2, M_{y^5} has none.
Vector space structure of Z_{11} continued

$Z_{11}|_{\mathbb{C}^2} = Z_{11}$, $Z_{11}|_{\mathbb{C}y} = y^5$, and $Z_{11}|_{\{0\}} = \{0\}$

For a basis of the vector space consider

$$\left(M_{Z_{11}} e_0 \oplus M_{y^5} e_5 \oplus M_{y^5} e_{10} \bigoplus \mathbb{C} e_i \right) \langle J \rangle$$

$M_{Z_{11}} = \langle 1, x, x^2, x^3, x^4, y, y^2, y^3, xy, xy^2, xy^3 \rangle$

$M_{y^5} = \langle 1, y, y^2, y^3, y^4 \rangle$

Invariant elements: $M_{Z_{11}}$ has x^2, M_{y^5} has none.
Although this only gave the vector space structure for \mathbb{Z}_{11} more presentations about the quantum ring of a singularity will be given tomorrow at BYU’s Spring Research Conference.

We hope to determine the quantum ring for many singularities to help with direction on how to prove Ruan’s conjecture.