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Abstract. We answer multiple open questions concerning lifting of idempotents that appear in the

literature. Most of the results are obtained by constructing explicit counter-examples. For instance,

we provide a ring R for which idempotents lift modulo the Jacobson radical J(R), but idempotents
do not lift modulo J(M2(R)). Thus, the property “idempotents lift modulo the Jacobson radical” is

not a Morita invariant. We also prove that if I and J are ideals of R for which idempotents lift (even

strongly), then it can be the case that idempotents do not lift over I + J . On the positive side, if I
and J are enabling ideals in R, then I +J is also an enabling ideal. We show that if I E R is (weakly)

enabling in R, then I[t] is not necessarily (weakly) enabling in R[t] while IJtK is (weakly) enabling in

RJtK. The latter result is a special case of a more general theorem about completions. Finally, we give
examples showing that conjugate idempotents are not necessarily related by a string of perspectivities.

1. Introduction

In ring theory it is useful to be able to lift properties of a factor ring of R back to R itself. This is
often accomplished by restricting to a nice class of rings. Indeed, certain common classes of rings are
defined precisely in terms of such lifting properties. For instance, semiperfect rings are those rings R
for which R/J(R) is semisimple and idempotents lift modulo the Jacobson radical.

Recall that idempotents lift modulo an ideal I E R if whenever x+I ∈ R/I is idempotent, then there
exists an idempotent e ∈ R such that x − e ∈ I. It is well known that when idempotents lift modulo
the Jacobson radical then there are additional properties which follow. For instance, idempotents
lift strongly, meaning that (using the notation above) we can choose e ∈ xR, see [7, Theorem 21.28].
Further, countable (but not arbitrary!) orthogonal sets of idempotents can be lifted orthogonally modulo
the Jacobson radical, see [7, Proposition 21.25].

Recently Alkan, Nicholson, and Özcan discovered that strong lifting is a consequence of a property
which splits from, and is independent of, idempotents lifting. Call an ideal I E R enabling in R if
whenever we have x ≡ e (mod I) for elements x, e ∈ R with e2 = e, then there exists an idempotent
f ∈ xR such that e ≡ f (mod I). It turns out that the Jacobson radical is always enabling [1,
Proposition 5], even when idempotents do not lift. Using this fact, Camillo and the third author
were able to generalize many of the standard theorems in the literature by replacing the hypothesis
“idempotents lift” with weaker assumptions [2].

In this paper we answer two of the three open questions about idempotent lifting and enabling which
appear in [9], both in the negative. We also answer two of the three open questions appearing (at the
end of Section 1) in [1], one in the negative and one in the positive. Most of these answers consist
of producing explicit counter-examples. However, we also prove that a weakened form of one of the
questions has a positive answer. We construct additional examples answering other questions found in
the literature.

In this paper J(R) will always denote the Jacobson radical of a ring R, and idem(R) is the set of
idempotents. We write I E R to signify that I is a two-sided ideal of R. By Mn(R) we mean the ring
of n× n matrices over R, and we will write ei,j for the matrix units in this ring.
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2. Lifting modulo J(R) is not a Morita invariant

Our first construction is of a ring which demonstrates that “idempotent lifting modulo the Jacobson
radical” is not a Morita invariant, answering the question raised in [9, p. 798, footnote 1] in the negative.

Theorem 2.1. If idempotents lift modulo the Jacobson radical J(S) of some ring S, idempotents do
not necessarily lift modulo J(M2(S)) in the ring M2(S).

Proof. For an arbitrary field k, take R = k[a, b, c] where a, b, c are commuting indeterminates. Let
I = (a2−a+bc) which is an ideal of R. Let S be the subring of the field of fractions Frac(R) = k(a, b, c)
consisting of those fractions f/g with f, g ∈ R and g ∈ 1 + I.

Note that S/IS ∼= R/I. In R/I, the relation a2 = a− bc along with the commuting relations form a
complete reduction system, and the images of the monomials abkc` and bkc`, for k, ` ≥ 0, form a k-basis
for R/I. Define a function ϕ from the monomials in R to N×N by setting ϕ(ajbkc`) = (j+ 2k, j+ 2`).

(More informally, one can think of this map as treating a = b
1
2 c

1
2 for the purposes of computing degrees

for monomials.) If r ∈ R contains no monomial which is divisible by a2, we define the ϕ-degree of r
to be the maximum of ϕ(r′) for monomials r′ in the support of r, with respect to the lexicographical
ordering on N×N. We then define the ϕ-degree of an element in R/I by taking its unique preimage in
R written in reduced form (repeatedly replacing occurrences of a2 by a − bc) and taking the ϕ-degree
in R.

We claim that this degree for R/I is additive. In other words, ϕ(rs) = ϕ(r) + ϕ(s) for any r, s ∈
R \ {0}. To see this, first we may assume each monomial in r and s is not divisible by a2 (writing
them in their reduced forms). Let r′ be the monomial in r so that the ϕ-degree of r is just ϕ(r′),
and similarly pick a monomial s′ in the support of s such that the ϕ-degree of s is ϕ(s′). Writing
r′ = aj1bk1c`1 and s′ = aj2bk2c`2 , we see that r′s′ is already reduced if j1 + j2 ≤ 1, otherwise it
reduces to −bk1+k2+1c`1+`2+1 + abk1+k2c`1+`2 , of which the first monomial has the larger ϕ-degree.
In either case, no other pair of monomials from r and s produces a monomial of ϕ-degree equal to
(2k1 + 2k2 + j1 + j2, 2`1 + 2`2 + j1 + j2), even after reduction, and so that monomial does not cancel.

The fact that R/I has no nontrivial units nor idempotents is now immediate, by considering ϕ-degree.
In particular, R/I is semiprimitive. Since 1 + IS ⊆ U(S), but S/IS ∼= R/I is semiprimitive, we have
that IS = J(S). Since S/IS ∼= R/I has no nontrivial idempotents, certainly idempotents lift modulo
J(S).

The element

X =

(
a b
c 1− a

)
∈M2(S)

is an idempotent modulo J(M2(S)). Indeed, the ideal I was chosen exactly to force this fact. We finish
by showing that X does not lift modulo J(M2(S)) to an idempotent in M2(S).

Suppose, by way of contradiction, that X does lift. Such a lift must be of the form

E =

(
u v
w x

)
∈M2(S)

where u− a, v − b, w − c, x− (1− a) ∈ IS. As E2 = E, we find that u2 = u− vw.
Taking common denominators, write u = u′/(1 + z), v = v′/(1 + z), and w = w′/(1 + z) for some

u′, v′, w′, z ∈ R with z ∈ I. From u2 = u− vw we obtain

(2.2) u′(1− u′ + z) = v′w′.

As R is a UFD, the factorizations into irreducibles on both sides of (2.2) must match. Further, as
a ≡ u ≡ u′ (mod IS) we have u′ ≡ a (mod I). In particular, u′ is non-constant, and so it has a
nontrivial irreducible factor d which is not congruent to a constant modulo I. Without loss of generality,
we may assume v′ also has d as a factor. Write u′ = du′′ and v′ = dv′′.
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Passing to the factor ring R/I, we have

a = u′ = du′′, b = v′ = dv′′.

The ϕ-degree of a is (1, 1), the ϕ-degree of b is (2, 0), and d does not have (0, 0) as its ϕ degree, hence
the only option for the ϕ-degree of d is (1, 0). But there is no element in R/I with ϕ-degree (1, 0),
yielding the needed contradiction. This proves that X does not lift modulo the Jacobson radical to an
idempotent. �

3. Sums of lifting and enabling ideals

It is easy to construct an example of two ideals L1, L2 E R for which idempotents lift, and yet
idempotents do not lift modulo L1 + L2. However, if we replace “lifting” with “enabling” we get a
positive result.

Proposition 3.1. If L1 and L2 are enabling ideals in a ring R, then L1 +L2 is an enabling ideal in R.

Proof. Let e2 = e ∈ R be an idempotent, and let x ∈ R satisfy x ≡ e (mod L1 + L2). We may choose
some w ∈ L1 with x+ w ≡ e (mod L2).

Since L2 is enabling, there is some r ∈ R such that e′ = xr+wr is an idempotent, and e′ ≡ x+w ≡ e
(mod L2). Note that, since L2 ⊆ L1 + L2, we have further that e′ ≡ e ≡ x (mod L1 + L2).

Now e′ = xr +wr ≡ xr (mod L1) because w ∈ L1. Since L1 is enabling, there exists an idempotent
f ∈ xrR ⊆ xR such that f ≡ e′ (mod L1). But then f ≡ e′ ≡ x (mod L1 + L2), and thus L1 + L2 is
enabling as desired. �

If L1 and L2 are strongly lifting (i.e. both lifting and enabling), then this does not in general imply
that L1 +L2 will be lifting. For example, take R to be the subring of the rational function field over Z
given by all polynomials of the form P (t)/Q(t), with P (t), Q(t) ∈ Z[t] and (6, Q(0)) = 1.

Let I be an ideal of R. If I + (t) = R, then we can write P1(t)/Q1(t) + tP2(t)/Q2(t) = 1 with
P1(t) ∈ I. Hence P1(0)Q2(0) = Q1(0). But then P1(t)/Q1(t) ∈ U(R), and I = R. So if I is maximal,
we have (t) ⊆ I, and we can compute directly that the only maximal ideals of R are (2, t) and (3, t), so
that J(R) = (6, t).

Now let L1 = (t) and L2 = (t − 6), so that L1, L2 ⊆ J(R), and thus these ideals are enabling.
Furthermore, R/L1

∼= R/L2
∼= Z(6) (the subring of Q with denominators relatively prime to 6). Hence

R, R/L1, and R/L2 are domains, and so each of these rings have as their only idempotents 0 and 1.
This implies that idempotents lift strongly modulo L1 and L2. However, L1 + L2 = (6, t) = J(R), so
that R/(L1 + L2) ∼= Z/6Z. The ring Z/6Z has four idempotents 0, 1, 3, 4, and hence idempotents do
not lift modulo L1 + L2. This answers the question posed in [9, p. 799] in the negative.

4. Enabling over polynomials

It turns out that enabling does not pass naturally to ideals in polynomial rings, answering the second
of the three questions in [1, p. 1882] in the negative. Y. Zhou pointed out to us that this example was
independently found in [3], but we include it here for completeness.

Proposition 4.1. If I E R is an enabling ideal, then this does not necessarily imply that I[t] E R[t] is
an enabling ideal.

Proof. Take R = Z(6), the subring of Q with denominators relatively prime to 6. Fix I = (6) which is
the Jacobson radical of R, and hence enabling. The ring R is a domain, thus Nil(R) = 0, and so by
Amitsur’s Theorem J(R[t]) = (0).

But R[t] is a domain, since R is a domain, and thus I[t] is idempotent-free. By [1, Proposition 6] it
follows that I[t] is not enabling, because I[t] * J(R[t]) = 0. �
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Recall that an ideal I E R is weakly enabling if whenever we have 1 − x ∈ I then there exists an
idempotent f ∈ xR with f − x ∈ I. We note that Proposition 4.1 remains true if we replace enabling
by weakly enabling, using the same proof, because an ideal in a ring with only trivial idempotents is
enabling if and only if it is weakly enabling by [1, Proposition 34].

5. Enabling over power series

Given the results of the last section, it is perhaps surprising that the corresponding question about
power series has a positive solution, answering the third question in [1, p. 1882]. We can simplify much
of the discussion in this section by working more generally with completions, of which power series rings
are the prototypical example.

Lemma 5.1. Assume J,K E R are ideals of R, and fix x ∈ R with x2 ≡ x (mod K). Given n ∈ Z>0

and an element fn ∈ xR, satisfying x− fn ∈ K and f2n − fn ∈ xJn, then there exists fn+1 ∈ xR with:

(1) x− fn+1 ∈ K,
(2) fn+1 − fn ∈ xJn,
(3) f2n+1 − fn+1 ∈ xJn+1.

Proof. Put fn+1 := f2n + 2(f2n − f3n) ∈ xR. Since f2n ≡ x2 ≡ x ≡ fn (mod K), we compute

x− fn+1 = x− f2n − 2fn(fn − f2n) ∈ K
and hence (1) holds. Similarly, we can verify (2) by noting

fn+1 − fn = (fn − f2n)(2fn − 1) ∈ xJn.

Finally, to verify (3) we factor to find

f2n+1 − fn+1 = (3f2n − 2f3n)2 − (3f2n − 2f3n) = (fn − f2n)2(4f2n − 4fn − 3) ∈ (xJn)2 ⊆ xJn+1

since n ≥ 1. �

This lemma acts as an inductive machine which “lifts” the enabling property through completions.

Theorem 5.2. Assume J E R is an ideal for which R is J-adically complete, and assume K E R is
an arbitrary ideal. Let π : R → R/J be the natural projection. If π(K) E R/J is an enabling ideal of
R/J and K is closed in the J-adic topology, then K is an enabling ideal of R.

Proof. We write R := R/J , and use bar notation for the image of π. Fix x ∈ R, e ∈ idem(R) with
e−x ∈ K. Thus e−x ∈ K. From the enabling hypothesis on K, fix r ∈ R such that xr ∈ idem(R) and

(5.3) x− xr ∈ K.
As R is J-adically complete, it is a well-known fact that idempotents lift strongly modulo J . (Lifting

follows from [7, Theorem 21.31], while enabling follows from the fact that J is contained in the Jacobson
radical by [7, Remark 21.30].) Thus, we may as well assume that xr ∈ idem(R). Using (5.3), we can
write x = xr + y + z for some y ∈ J and z ∈ K. Our next step is to modify y so it is a right multiple
of x. To this end, we find

x = x− x2 + x2 = (x− x2) + x(xr + y + z) = (x− x2)(1− r) + xr + xy + xz.

Put f1 := xr + xy and w := (x − x2)(1 − r) + xz. Using the fact that x2 ≡ e2 = e ≡ x (mod K) we
have x− f1 = w ∈ K. From (xr)2 = xr we have

f21 − f1 = (xr + xy)2 − (xr + xy) = xrxy + xyxr + xyxy − xy ∈ xJ.
Applying Lemma 5.1 recursively, for each n ≥ 1 we obtain elements fn ∈ xR satisfying the appropri-

ate compatibility conditions allowing us to define f := limn→∞ fn ∈ R. Since K is closed in the J-adic
topology, by Lemma 5.1(1) we have x− f = limn→∞(x− fn) ∈ K. Further, by part (3) of the lemma,
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f2 = f . So it suffices to prove that f ∈ xR. This follows from the fact that, by Lemma 5.1(2), we
can write fn = xsn for some J-adically compatible sn ∈ R, and putting s = limn→∞ sn ∈ R we have
f = xs. �

There are two important special cases of this theorem.

Corollary 5.4. If I E R is an enabling ideal of R, then IJtK E RJtK is an enabling ideal of RJtK.

Proof. Apply Theorem 5.2 to the ring RJtK, taking J = (t) and K = IJtK. �

Corollary 5.5. Let R and S be rings, and let RVS be an R-S-bimodule. Let T =

(
R V
0 S

)
be a

split-null extension. Finally, let I1 E R, I2 E S, and let W ⊆ V be an R-S-submodule.

The ideal K :=

(
I1 W
0 I2

)
is enabling in T if and only if I1 is enabling in R and I2 is enabling in S.

Proof. The forward direction is a slight strengthening of [1, Proposition 17], so for completeness we
include the details here. Fix x1 ∈ R, e1 ∈ idem(R), x2 ∈ S, and e2 ∈ idem(S) with e1 − x1 ∈ I1 and
e2 − x2 ∈ I2. Then we have diag(e1, e2)− diag(x1, x2) ∈ K. By hypothesis there exists an element

t =

(
p w
0 q

)
∈ diag(x1, x2)T ∩ idem(T )

with t− diag(x1, x2) ∈ K. We easily see that p2 = p ∈ x1R, p− x1 ∈ I1, q2 = q ∈ x2S, and q− x2 ∈ I2.
For the converse apply Theorem 5.2 to the ring T , taking J to be the ideal of strictly upper-triangular

matrices. Since J2 = 0, the ring T is J-adically complete and K is closed in the J-adic topology. �

Using the previous corollary and a straightforward induction, we obtain the following result, which
was also left open in [1, p. 1882].

Corollary 5.6. An ideal I E R is an enabling ideal of R if and only if Tn(I) is an enabling ideal of
Tn(R) (the ring of n× n upper-triangular matrices) for every n ≥ 1.

Note that the results of this section remain true if we replace “enabling” by “weakly enabling”
everywhere, using the same proofs except with the obvious changes when needed.

6. Perspectivity vs. conjugation

We now change course in order to answer a question raised in [2]. To motivate the problem, we need
to first recall some standard equivalence relations one can place on the set of idempotents in a ring.

Definition 6.1. Let e, f ∈ R be two idempotents.

(1) These idempotents are conjugate if there exists a unit u ∈ R with f = u−1eu, and we write
e ∼ f in this case.

(2) These idempotents are isomorphic if there exist a, b ∈ R such that e = ab and f = ba, and we
write e ∼= f in this case.

(3) These idempotents have isomorphic complements if 1 − e and 1 − f are isomorphic, and we
write e ∼=′ f in this case.

(4) These idempotents are right associate (respectively left associate) if there exists a unit u ∈ R
with f = eu (respectively f = ue), and we write e ∼r f (respectively e ∼` f).

There are some immediate connections between these properties.

Lemma 6.2. Let e, f ∈ R be idempotents.

(1) The relations e ∼= f and e ∼=′ f hold if and only if e ∼ f holds.
(2) We have e ∼= f if and only if eR ∼= fR.
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(3) The following are all equivalent:
(a) e ∼r f ,
(b) eR = fR,
(c) ef = f and fe = e,
(d) (1− e) ∼` (1− f).

(4) If e ∼r f or e ∼` f , then e ∼ f . Moreover, if e ∼r f and e ∼` f both hold, then e = f .

Proof. For a proof of (2) see [7, Proposition 21.20], and for (3) see [8, Exercise 21.4]. The other parts
are straightforward and left to the reader. �

Recall that two direct summands A,B ⊆⊕ M (of some module M) are perspective exactly when
there exists a common direct sum complement C. In other words, A⊕ C = B ⊕ C = M . Since direct
summands are associated with idempotents (in the endomorphism ring), we might expect by Lemma
6.2(3) that left and right associativity of idempotents is connected to perspectivity in some way. The
following lemma tells us exactly how they are related in the right regular module RR.

Lemma 6.3. Given two idempotents e, f ∈ R, the direct summands eR and fR in RR are perspective
if and only if there exist idempotents g, h ∈ R with e ∼r g ∼` h ∼r f .

Proof. (⇒): Assume eR and fR are perspective, say with common direct sum complement CR. Let g
be the idempotent with gR = eR and (1 − g)R = C. Similarly, define h as the idempotent satisfying
hR = fR and (1− h)R = C. We then have e ∼r g ∼` h ∼r f .

(⇐): Given the chain e ∼r g ∼` h ∼r f , we compute directly that (1− g)R = (1− h)R is a common
direct sum complement to both eR and fR in RR. �

While in general the union of two equivalence relations is not an equivalence relation, after closing
the union under transitivity it does become an equivalence relation. We will write ≈ for the transitive
closure of the union of the two relations ∼` and ∼r. In other words, given two idempotents e, f ∈ R
we will write e ≈ f exactly when e = e0 ∼` e1 ∼r e2 ∼` · · · ∼r e2n = f for some idempotents
e0, e1, . . . , e2n ∈ R and some n ∈ N. By an easy application of the previous lemma, we see that ≈
is also the transitive closure of the perspectivity relation on direct summands in RR (or, by left-right
symmetry, in RR).

We have the following partial lattice among the relations we have introduced so far.

∼=

BBBBBBBB ∼=′

{{{{{{{{

∼

�
�
�

≈

{{{{{{{{

CCCCCCCC

∼`

DDDDDDDD ∼r

zzzzzzzz

=

This begs the question of whether or not ∼ is the same as ≈. Equivalently, given RR = A⊕A′ = B⊕B′
with A ∼= B and A′ ∼= B′, is it possible to start with A⊕A′ and by successively replacing one summand
at a time (in other words, replacing a direct sum decompositions with a perspective decomposition)
get to B ⊕ B′? The answer is no in general, but there are many situations where the answer to this
question is yes. To formalize these claims we introduce a new definition.
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Definition 6.4 (Perspectivity length). The perspectivity length of a ring R, written pl(R), is the
smallest integer n ≥ 0 such that for any two idempotents e, f ∈ R with e ≈ f , then given a chain
e = e0 ∼∗ e1 ∼∗ · · · ∼∗ em = f with m minimal, we must have m ≤ n. (By the symbol ∼∗ we mean
either ∼` or ∼r in each instance). In case no such smallest integer exists, we set pl(R) =∞.

Here, and throughout the remainder of the paper, whenever talking about chains we will either be
referring to chains of the form e = e0 ∼∗ e1 ∼∗ · · · ∼∗ em = f as above, or to the corresponding chains
of direct sum decompositions (e0R ⊕ (1 − e0)R) → (e1R ⊕ (1 − e1)R) → · · · → (emR ⊕ (1 − emR)).
(Here, an arrow means that we not only have an equality eiR ⊕ (1− ei)R = ei+1R ⊕ (1− ei+1)R, but
in fact one of the summands is unchanged.)

Proposition 6.5. A ring R has pl(R) = 0 if and only if R is abelian.

Proof. Let e ∈ R be an idempotent. By [8, Exercise 21.4], we have e ∼r f if and only if f = e+ex(1−e)
for some x ∈ R. We will use this fact freely below.

(⇒): Assume pl(R) = 0. Since e ∼r e+ex(1−e) we must have ex(1−e) = 0 (else we have a minimal
length 1 chain). Thus eR(1− e) = 0, and similarly (1− e)Re = 0. This proves that e is central, hence
R is abelian.

(⇐): Assume R is abelian. Thus eR(1− e) = (1− e)Re = 0. Hence the only idempotent connected
by ≈ to e is e itself. Since e is arbitrary, we have pl(R) = 0. �

Proposition 6.6. A ring R has pl(R) = 1 if and only if R is not abelian and for each idempotent
e ∈ R either eR(1− e) = 0 or (1− e)Re = 0.

Proof. This is similar to the proof above. �

Notice that there do exist rings with pl(R) = 1, such as the ring of upper-triangular matrices
(
k k
0 k

)
over any nonzero ring k with only trivial idempotents.

Theorem 6.7. Perspectivity of direct summands in RR is transitive if and only if pl(R) ≤ 3 and any
chain of length 3 can be written starting with ∼r (or, equivalently, with ∼`).

Proof. (⇒): Suppose first that we have a chain of the form e0 ∼` e1 ∼r e2 ∼` e3. By Lemma 6.3 we see
that e0R is perspective to e2R (since they are connected by the chain e0 ∼r e0 ∼` e1 ∼r e2). Similarly,
e2R is perspective to e3R. By hypothesis perspectivity is transitive, and so e0 is connected to e3 by a
length 3 chain starting with ∼r, again appealing to Lemma 6.3.

That chains of length ≥ 4 can be reduced to chains of length ≤ 3 follows from the fact that (as was
done in the previous paragraph) chains can be broken up into strings of perspectivities, and then we
can apply transitivity and Lemma 6.3.

(⇐) : Suppose that eR is perspective to fR and fR is perspective to gR, for idempotents e, f, g ∈ R.
We then have e ≈ g (by another application of Lemma 6.3). By hypothesis, e and g are connected by a
chain of length 3 starting with ∼r (increasing the length of the chain if necessary). By Lemma 6.3, eR
is perspective to gR.

Finally, the parenthetical remark follows by noticing that if e is connected to f by a chain of length
3, then (1− e) is connected to (1− f) by a chain of length 3, but with each instance of ∼` replaced by
∼r (and vice versa). �

Proposition 6.8. Let F be a field. If R = Mn(F ) with n > 1, then pl(R) = 3 and any chain of length
3 can be written starting with ∼r (or with ∼`).

Proof. First, it takes a simple computation to show that idempotents e1,1 and e2,2 are connected by
the chain

e1,1 ∼` (e1,1 + e2,1) ∼r (e1,2 + e2,2) ∼` e2,2.
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Next suppose, by way of contradiction, that there is a smaller chain connecting these idempotents.
Without loss of generality (by left-right symmetry) we would have e1,1 ∼` g ∼r e2,2 for some idempotent
g ∈ R. But the set of all idempotents left associate to e1,1 are of the form e1,1 + (1 − e1,1)xe1,1 (for
some x ∈ R), while the set of right associate idempotents to e2,2 are of the form e2,2 + e2,2y(1 − e2,2)
(for some y ∈ R). These two sets do not intersect, since the first is annihilated on the right by e2,2, but
the second set is sent to e2,2 under right multiplication by e2,2. This proves that pl(R) ≥ 3.

The final statement follows from the previous theorem and the well-known fact that perspectivity
in RR is transitive (for this specific ring). For example, see [4, Theorem 5.12] for a much stronger
statement. �

To prove that ≈ is not the same relation as ∼, we will make use of the following key example,
which shows that pl(R) can be infinite. This also answers [2, Question 2.7] in the negative. We thank
S. Carnahan for providing ideas leading to this example, and giving an alternate proof of the following:

Proposition 6.9. For the ring R = M2(Z) we have pl(R) =∞.

Proof. Let S be the set of non-trivial idempotents R. The elements of S are characterized as the rank
1 matrices with trace 1. There is a nice bijection PSL2(Z)→ S via the map(

a b
c d

)
with ad− bc = 1 7−→

(
d
c

)(
a −b

)
=

(
ad −bd
ac −bc

)
with ad− bc = 1

noting that the latter matrices are precisely those with rank 1 and trace 1. (The matrices on the left
are only defined up to a factor of ±I. This corresponds to the two possible factorizations on the right.)

Under this identification, passing between (left or right) associates in S corresponds to left multiplying
in PSL2(Z) by matrices of the form

S(n) :=

(
1 n
0 1

)
, S(n)t :=

(
1 0
n 1

)
.

So it suffices to show that writing elements of PSL2(Z) in the form S(n1)S(n2)t · · ·S(n2k−1)S(n2k)t,
then k cannot be bounded. This is well-known, so we only sketch the short proof here.

Taking

A =

(
0 1
−1 0

)
and B =

(
0 −1
1 1

)
,

it happens that A2 = B3 = −I, (AB)n = S(n), and (AB−1)n = (−1)nS(n)t. Working modulo ±I, the
images of A and B generate PSL2(Z) as a free product of cyclic groups of orders two and three, see [10,
Example III, p. 171] for more details. Elements in such a free product can be written uniquely as words
in the form AB±1AB±1A · · ·AB±1A, possibly with the leading or terminal A’s dropped, and where
the exponents on the B’s are independent. We will be interested in the number of sign changes in the
exponents of the B’s (say, when reading the word from left to right). If we multiply such a word (either
on the left or the right) by S(n) = (AB)n and write it in its reduced form (by repeatedly removing
copies of A2 and B3), then there are at most two new sign changes (but it is also possible for there to
be fewer sign changes). The same statement is true for S(n)t.

Thus, any chain of left and right associates of length ≤ k corresponds to a word in the free product
with at most 2k sign changes. As Xk := (S(1)S(1)t)k+1 ≡ (ABAB−1)k+1 (mod ± I) has 2k + 1
sign changes among the exponents, we see that the idempotents corresponding to I,Xk ∈ PSL2(Z) are
connected by a chain, no shorter than k + 1 steps long. (Additional improvements on the lengths of
chains are available using geometric and number-theoretic methods, but we won’t pursue that here.) �

With this example in place, we are ready to prove that conjugation is strictly stronger than ≈.

Theorem 6.10. The relations ≈ and ∼ are, in general, different.
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Proof. Let R be a ring with pl(R) = ∞. For each integer k ≥ 1 we fix a pair of idempotents (ek, fk)
with ek ≈ fk for which there exists no chain of length ≤ k connecting them. Let S =

∏∞
i=1R be the

direct product of countably many copies of R. We will show that ≈ does not agree with ∼ in S.
The elements e := (e1, e2, . . .), f := (f1, f2, . . .) ∈ S are idempotents. Further e ∼ f , since ei ∼ fi

for each i ≥ 1. Suppose, by way of contradiction, that e ≈ f ; say, the two idempotents are connected
by a chain of length n. Restricting this chain to the nth coordinate would give a chain of length n
connecting en to fn, yielding the needed contradiction. �

This still leaves open the possibility that ≈ and ∼ are equal on any ring with pl(R) <∞. There is a
cryptic remark in [6, p. 15], which claims the existence of “an example (due to G. Bergman) of a regular
ring with perspectivity transitive” that has ≈ different from ∼. By Theorem 6.7, such a ring necessarily
has perspectivity length ≤ 3. Bergman was unable to recall this example, but fortunately K. Goodearl
was able to supply enough of the communication for us to reproduce a version of the example here.

Theorem 6.11. There exists a ring S with perspectivity transitive, and with conjugate idempotents e, f
satisfying e 6≈ f .

Proof. Let F be a field, and let R be the subring of the column-finite matrices of F which are eventually
banded, in the sense that there is a row after which all diagonals are constant. Thus, elements of R are
of the form 

∗ ∗ ∗ · · ·
...

...
... · · ·

∗ ∗ ∗ · · ·
a1 a2 a3 · · ·

a1 a2 a3
. . .

. . .
. . .

. . .


.

This is the opposite ring of a well-known example due to Bergman, see [6, Example 1], [5, Example
4.26], and [11, Example 3.1]. Let P be the (non-unital) subring of R consisting of matrices with only
finitely many nonzero rows.

We put S =
(
R P
P R

)
. It is a straightforward calculation to show that idempotents in S are exactly

the matrices of the form

E :=


(
X0 X1

0 D1

) (
Y0 Y1
0 0

)
(
Z0 Z1

0 0

) (
W0 W1

0 D2

)


where X0, Y0, Z0,W0 ∈Mn(F ) (for some sufficiently large n ∈ N), D1, D2 ∈ {0, I},

(6.12) A :=

(
X0 Y0
Z0 W0

)
is an idempotent in M2n(F ), and

(6.13)
X0X1 +X1D1 + Y0Z1 = X1, Z0X1 + Z1D1 +W0Z1 = Z1,

X0Y1 + Y0W1 + Y1D2 = Y1, Z0Y1 +W0W1 +W1D2 = W1.

Consider the following types of idempotents:

Type I =

(Ik 0
0 0

)
0

0 0

 , Type II =

(0k 0
0 I

)
0

0 0

 , Type III =

I 0

0

(
Ik 0
0 0

) .
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We claim that every idempotent can be brought, using a chain of length 3 starting with ∼r, to one of
these types or their complements. We will sketch the details in the case where D1 = 0 and D2 = I; the
other cases are similar.

By Proposition 6.8 we know that there exists a chain

A ∼r A1 ∼` A2 ∼r D

where D is a diagonal matrix with only 1’s and 0’s. (The number of 0’s and 1’s in D is fixed, but their
placement along the diagonal is arbitrary.) Writing

A1 =

(
X ′0 Y ′0
Z ′0 W ′0

)
,

put

E1 :=


(
X ′0 0
0 0

) (
Y ′0 Y ′1
0 0

)
(
Z ′0 0
0 0

) (
W ′0 W ′1
0 I

)


where Y ′1 = −X ′0Y1 − Y ′0W1 + Y1 and W ′1 = −Z ′0Y1 −W ′0W1 + W1. One checks directly that E1 is
idempotent, EE1 = E1, and E1E = E, using (6.13) and the equalities AA1 = A1 and A1A = A (which
follow from A ∼r A1, by Lemma 6.2(3)). Thus, again by Lemma 6.2(3), we have E ∼r E1. Writing

A2 =

(
X ′′0 Y ′′0
Z ′′0 W ′′0

)
,

put

E2 :=


(
X ′′0 0
0 0

) (
Y ′′0 0
0 0

)
(
Z ′′0 0
0 0

) (
W ′′0 0
0 I

)
 .

Since A1 ∼` A2, one similarly shows that E1 ∼` E2. Finally, if D = diag(D′1, D
′
2) then putting

E3 = diag(D′1, D1, D
′
2, D2) we have E2 ∼r E3. Taking n large enough, we can force E3 to have the

appropriate form by choosing D′1, D
′
2 correctly.

Next we claim that the matrices of types I, II, and III, and their complements, are distinct represen-
tatives for the equivalence classes of idempotents under ≈. To prove this, we will describe an invariant
(under ≈) for each class. For type I, the invariant is simply the rank of the matrix (thought of as acting
on F (ω) × F (ω)). For the complements of type I, the invariant is the dimension of the null space. For
any idempotent E which neither has finite rank nor finite nullity, we note that (taking n large enough)
the number

rank(A)− nullity(A)− n

is an invariant of E; here A and n ∈ N are as in (6.12). We see that this invariant distinguishes among
the matrices of types II and III. Finally, to distinguish these matrices from their complements, we just
look to see whether the infinite identity matrix I appears in the upper left corner, or the lower right
corner (which property does not change under multiplication by a unit in S).

We thus have that

(
I 0
0 0

)
6≈

(0 0
0 I

)
0

0 0

 . Finally, it is easy to see that these two specific

idempotents are conjugate in S. �
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7. Unanswered questions

We finish this paper by listing some of the questions we were not able to answer. One occurs in [9]
on page 800, and asks:

Question 7.1. If I E R is an exchange ideal, and idempotents lift modulo I, is I an enabling ideal?

The remaining open question in [1] is the first of the three questions posed on page 1882, and asks:

Question 7.2. If I E R is an enabling ideal of R, is Mn(I) EMn(R) an enabling ideal of Mn(R)?

Another question, implicitly found in [1], is the following:

Question 7.3. Is there an example of an ideal which is weakly enabling but not enabling?
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