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Abstract. We investigate when radicals F satisfy Amitsur’s property on skew polynomials of deriva-

tion type, namely F(R[x; δ]) = (F(R[x; δ]) ∩ R)[x; δ]. In particular, we give a new argument that the

Brown-McCoy radical has this property. We also give a new characterization of the prime radical of
R[x; δ].

1. Introduction

A radical F is said to satisfy Amitsur’s property if for every ring R we have F(R[x]) = (F(R[x])∩R)[x].
The terminology is a consequence of Amitsur’s work in [1], where he showed that the Jacobson radical,
prime radical, Levitzki radical, and the upper nilradical all have this property. Amitsur also gave
the following two criteria (as distilled in [10, Lemma 1]), which together are sufficient to guarantee
Amitsur’s property, and in practice are often easily verified: (1) F is hereditary and (2) whenever R
has characteristic p we have F(R[x]) ∩R[xp − x] ⊆ F(R[xp − x]). These criteria were used for instance
in [10, Theorem 3] and [12, Theorem 3.2] to show respectively that the Brown-McCoy radical and
Behrens radical have Amitsur’s property. For three recent and interesting studies of Amitsur’s property
in connection with other natural radical properties, see [18, 13, 9]. For information on general radical
theory, and Amitsur’s property in particular, we recommend [7, Section 4.9] as a good reference.

In the present paper we are concerned with radicals of skew polynomial rings of derivation type
(which we will also call “differential polynomial rings”). Let R be a ring, and let δ be a derivation on
R, meaning an additive map satisfying the product rule δ(ab) = δ(a)b+ aδ(b) for all a, b ∈ R. We can
then define the ring R[x; δ] consisting of left polynomials with standard addition, and multiplication
subject to the skewed constraint xa = ax + δ(a). Radicals of this ring were first studied in the work
of Ferrero, Kishimoto, and Motose [6], where it was shown that the Jacobson, prime, and Wedderburn
radicals again possess (an analogue of) Amitsur’s property. Letting J denote the Jacobson radical, they
raised the question of whether J(R[x; δ]) ∩R is a nil ideal of R, and this question remains open.

In this paper, we generalize the work in [6] to give a set of general criteria for the analogue of
Amitsur’s property to hold over R[x; δ]. We say that a radical F satisfies the δ-Amitsur property if:

For all rings R and for all derivations δ of R,

(F(R[x; δ]) ∩R)[x; δ] = F(R[x; δ]).
(1.1)
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When possible, we also describe explicitly the resulting ideal F(R[x; δ]) ∩R E R.
Throughout the paper, R will be an arbitrary associative ring possibly without 1, and δ will be an

arbitrary derivation on R. We reserve fractal letters for radicals, capitalized English letters for rings
and sets, and lowercase English letters for ring elements or variables. We write I E R to mean that
I is a two-sided ideal of R. When we use the word “radical” we will mean a radical in the sense of
Kurosh and Amitsur [7, Definition 2.1.1]. (Two exceptions to this convention are when we speak of the
“Wedderburn radical” and “bounded nilradical” whose names have been established in the literature,
but these are not technically radicals.) To be precise, F is a radical if it assigns to each ring R an ideal
F(R) E R satisfying the next three conditions:

(R1) If F(R) = R and R→ S is a surjective ring homomorphism, then F(S) = S.
(R2) We have F(F(R)) = F(R), and if I E R with F(I) = I, then F(I) ⊆ F(R).
(R3) The equality F(R/F(R)) = 0 always holds.

As usual, we say the radical F is hereditary if it satisfies the further condition:

(R4) If I E R, then F(I) = F(R) ∩ I.

2. Preliminaries on rings with derivations

In this short section we collect a few definitions and results that are important when working with
skew polynomials of derivation type. Given a derivation δ on a ring R, following the literature we say
that a subset S ⊆ R is a δ-subset if δ(S) ⊆ S. When I E R is an ideal and a δ-subset, we simply say
that I is a δ-ideal. The next lemma (whose proof we omit) relates the ideals of R and R[x; δ].

Lemma 2.1. Let R be a ring and δ a derivation of R.

(1) If I is a right ideal of R, then I[x; δ] is a right ideal of R[x; δ] and I[x; δ] ∩R = I.
(2) If I is a δ-ideal of R, then I[x; δ] is an ideal of R[x; δ].
(3) If J is an ideal of R[x; δ], then J ∩R is an ideal of R.

Given f(x) =
∑n
i=0 aix

i ∈ R[x; δ], with ai ∈ R for each 0 ≤ i ≤ n, we abuse notation by writing
δj(f(x)) =

∑n
i=0 δ

j(ai)x
i. (Note that δ is not a derivation on R[x; δ].) We will find many occasions to

make use of the following extremely useful result, which capitalizes on the startlingly pretty formula
xf(x)− f(x)x = δ(f(x)) which recursively leads to

(2.1) δj(f(x)) =

j∑
i=0

(−1)j−i
(
j

i

)
xif(x)xj−i.

Lemma 2.2. If J is an ideal of R[x; δ] and f(x) ∈ J , then

Rδj(f(x))R ⊆ J
for every j ≥ 0. Moreover, if J is closed under multiplication by x, then δj(f(x)) ∈ J for all j ≥ 0 and
J ∩R is a δ-ideal of R.

Proof. Given r, s ∈ R, we obtain rδj(f(x))s ∈ J by multiplying (2.1) on the left by r and the right
by s. To prove the last sentence, note that J ∩ R is clearly an ideal in R, and when J is closed under
multiplication by x then (2.1) proves the δ-invariance claims. �

3. The prime radical

The prime radical P(R) of a ring R has many equivalent definitions:

• The lower radical described by the class of nilpotent rings, and thus the limit of the (higher)
Wedderburn radicals.

• The intersection of all the prime ideals.
• The set of strongly nilpotent elements.
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• The limit of the (higher) left (or right) T -nilpotent radideals, see [8].
• The limit of the (higher) bounded nilradicals.

If we write Pδ(R) := P(R[x; δ]) ∩ R, the ideal Pδ(R) E R can similarly be described as a limit of
δ-Wedderburn ideals [6, Theorem 2.1 and Corollary 2.2], as the intersection of δ-prime δ-ideals [5,
Theorem 1.1], and as the set of strongly δ-nilpotent elements [11, Proposition 1.11]. In this section we
will pursue an analogue of the fourth bullet point.

A subset S ⊆ R is left T -nilpotent if for every sequence of elements s1, s2, . . . ∈ S there is some index
n ≥ 1 such that s1s2 · · · sn = 0. Such subsets are quite well-behaved, as evidenced by the next two
lemmas.

Lemma 3.1. Let R be a ring, I ⊆ R, and J E R. If J is left T -nilpotent and I is left T -nilpotent in
R/J , then I + J is left T -nilpotent.

Proof. This is a slight strengthening of [8, Lemma 4.2], with the same proof, mutatis mutandis. �

Lemma 3.2. Let R be a ring, I ⊆ R, and J a one-sided ideal of R.

(1) If J is left T -nilpotent, then the two-sided ideal generated by J is left T -nilpotent.
(2) If I and J are left T -nilpotent, then I + J is left T -nilpotent.

Proof. This is [8, Proposition 4.3]. �

The left T -nilpotent radideal is defined by T`(R) := {a ∈ R : aR is left T -nilpotent} or equivalently
as the set

{a ∈ R : the ideal generated by a is left T -nilpotent}.
For more information and basic facts, see [8, Section 4]. This radical-like ideal satisfies the δ-Amitsur
property, and moreover we can explicitly describe the derived ideal as follows.

Theorem 3.3. Given a ring R with a derivation δ, then T`(R[x; δ]) = T`,δ(R)[x; δ], where

T`,δ(R) :=

a ∈ R :

∞∑
j=0

δj(a)R is left T -nilpotent


= T`(R[x; δ]) ∩R.

(3.1)

Proof. Define T`,δ(R) as above, and note that this is an ideal of R by Lemma 3.2(1), and hence a δ-ideal.
We first show that T`(R[x; δ]) ⊆ T`,δ(R)[x; δ]. Fix f(x) ∈ T`(R[x; δ]), and write f(x) =

∑n
i=0 aix

i with
ai ∈ R for each 0 ≤ i ≤ n. Set Ji =

∑∞
j=0 δ

j(ai)R for 0 ≤ i ≤ n. We will show that Jn is left
T -nilpotent.

Fix a sequence of elements r1, r2, . . . ∈ R and a sequence of non-negative integers i1, i2, . . . and set
tk := δi1(an)r1δ

i2(an)r2 · · · δik(an)rk for each k ≥ 1. Each of the elements

δi1(f(x))r1δ
i2(f(x))r2, δ

i3(f(x))r3δ
i4(f(x))r4, . . .

belongs to T`(R[x; δ]) by Lemma 2.2, and so there exists some index k such that

δi1(f(x))r1δ
i2(f(x))r2 · · · δik(f(x))rk = 0.

The degree nk coefficient in this product is exactly tk, and thus tk = 0.
We now show that Jm is left T -nilpotent for any 0 ≤ m ≤ n. By a recursive argument, we may

assume that Jm+1, Jm+2, . . . , Jn are left T -nilpotent, and thus the two-sided ideal J generated by
Jm+1 + Jm+2 + · · · + Jn is a left T -nilpotent ideal by Lemma 3.2. Lemma 3.1 tells us that in order
to prove Jm is left T -nilpotent we can pass to the quotient ring R/J , and thus we may assume m is

the leading index of f(x). But then the methods of the previous paragraph apply, and so Jm is left
T -nilpotent as desired, which proves the inclusion T`(R[x; δ]) ⊆ T`,δ(R)[x; δ].



4 CHAN YONG HONG, NAM KYUN KIM, YANG LEE, AND PACE P. NIELSEN

We now show the opposite inclusion T`(R[x; δ]) ⊇ T`,δ(R)[x; δ]. Fix f(x) =
∑n
i=0 aix

i ∈ T`,δ(R)[x; δ],
and also fix a sequence of polynomials g1(x), g2(x), . . . ∈ R[x; δ]. Every coefficient in the product
f(x)g1(x)f(x)g2(x) · · · f(x)gk(x) is a Z-linear combination of terms of the form

(3.2) δj1(ai1)δj
′
1(r1)δj2(ai2)δj

′
2(r2) · · · δjk(aik)δj

′
k(rk)

where j1, j
′
1, j2, j

′
2, . . . , jk, j

′
k are non-negative integers, for each m ≥ 1 we have that rm is a coefficient

of gm(x), that aim ∈ {a0, a1, . . . , an}, and that

jm, j
′
m <

m∑
p=1

deg(gp(x)) +m deg(f(x)) + 1.

In particular, note that there are only finitely many choices for each jm, j′m, im, and rm (given that we
have already chosen the sequence g1(x), g2(x), . . .).

Suppose by way of contradiction that for each k ≥ 1 there is a term as in (3.2) which is nonzero. By
an application of König’s tree lemma (see, for instance, how it is applied in [8]), we can fix sequences
i1, i2, . . . , j1, j2, . . . , j

′
1, j
′
2, . . . ∈ N and r1, r2, . . . ∈ R such that

sk := δj1(ai1)δj
′
1(r1)δj2(ai2)δj

′
2(r2) · · · δjk(aik)δj

′
k(rk) 6= 0

for every k ≥ 1. On the other hand, some ai must occur infinitely often in the sequence ai1 , ai2 , . . .,
and since ai ∈ T`,δ(R) we must have sk = 0 for k large enough, giving us the needed contradiction. �

Example 3.4. The ideal T`,δ(R) is not always the maximal δ-ideal contained in T`(R). Indeed, let
R = F2[x0, x1, . . . : x2i = 0] with derivation δ(xi) = xi+1. We see that T`(R) = P(R) = (x0, x1, . . .) is
already a δ-ideal, but x0 /∈ T`,δ(R) since

x0δ(x0)δ2(x0) · · · δk(x0) = x0x1x2 · · ·xk 6= 0

for each k ≥ 1.

Following [8, Section 5], put T
(0)
` = (0) and recursively define the higher left T -nilpotent radideals

T
(α)
` (R) = {a ∈ R : a+ T

(β)
` (R) ∈ T`(R/T

(β)
` (R))}

if α is the successor of β, and if α is a limit ordinal

T
(α)
` (R) =

⋃
β<α

T
(β)
` (R).

We can now extend Theorem 3.3 to the higher left T -nilpotent radideals, by a simple transfinite induc-
tion.

Corollary 3.5. The higher left T -nilpotent radideals T
(α)
` satisfy the δ-Amitsur property (1.1). Thus,

we can write

T
(α)
` (R[x; δ]) = T

(α)
`,δ (R)[x; δ]

for a unique δ-ideal T
(α)
`,δ (R) E R.

Proof. Assume the statement is true for all ordinals β < α. Note that we have a natural surjection

R[x; δ] → R[x; δ]/T
(β)
`,δ (R)[x; δ], and a natural isomorphism R[x; δ]/T

(β)
`,δ (R)[x; δ] ∼= (R/T

(β)
`,δ (R))[x; δ],

where δ is the derivation induced on the factor ring by δ, since T
(β)
`,δ (R) is a δ-ideal.

First consider the case when α is the successor of some ordinal β. By Theorem 3.3, we know T`
satisfies the δ-Amitsur property. Thus, the elements of T`((R/T

(β)
`,δ (R))[x; δ]) are determined by the

constant polynomials in this ideal. Lifting these constant polynomials through the natural isomorphism
and surjection above, we obtain the desired conclusion.
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Finally, if α is a limit ordinal, we have

T
(α)
` (R[x; δ]) =

⋃
β<α

T
(β)
` (R[x; δ]) =

⋃
β<α

T
(β)
`,δ (R)[x; δ]

=

⋃
β<α

T
(β)
`,δ (R)

 [x; δ].

Thus, we can take T
(α)
`,δ (R) =

⋃
β<α T

(β)
`,δ (R). �

As noted at the beginning of this section, these higher left T -nilpotent radideals stabilize to the prime
radical. Thus, we obtain a new characterization of the prime radical of R[x; δ], and we also recover the
result of Ferroro, Kishimoto, and Motose that the prime radical satisfies the δ-Amitsur property [6].

Proposition 3.6. Given a ring R with a derivation δ, then we have P(R[x; δ]) = Pδ(R)[x; δ], where

Pδ(R) = P(R[x; δ]) ∩R

is the limit of the δ-ideals T
(α)
`,δ (R). In particular, the prime radical satisfies the δ-Amitsur property.

4. An alternate characterization of the δ-Amitsur property

Perhaps the most well-known and utilized condition for checking the Amitsur property is that of
Krempa in [10, Theorem 1], which states that a radical F has Amitsur’s property if and only if for every
ring R,

F(R[x]) ∩R = 0 implies F(R[x]) = 0.

This equivalence holds true for differential polynomial rings, with only minimal changes to the proofs,
as we will now show. To begin, we first need the basic fact that radicals are closed under multiplications
in unital extensions.

Lemma 4.1. Let F be a radical and let R be a ring. If I E R, then F(I) E R and hence F(I) ⊆ F(R).

Proof. This is [2, Theorem 1]. �

To apply this to unital extensions, we make the following definition. If R is unital we set R1 = R,
otherwise we let R1 = R⊕Z be the Dorroh extension of R by Z, where addition is component-wise and
multiplication is given by the rule (r,m)(s, n) = (rs+ms+nr,mn) for all r, s ∈ R and m,n ∈ Z. Note
that R E R1.

Corollary 4.2. Let F be a radical, let R be a ring, and let δ be a derivation on R. It happens that
xF(R[x; δ]) + F(R[x; δ])x ⊆ F(R[x; δ]). Consequently, F(R[x; δ]) ∩R is a δ-ideal of R.

Proof. If R contains 1, then this result is trivial. If R does not contain 1, let R1 be the Dorroh extension
as above. We extend δ to R1 in the only possible way which preserves the fact that δ is a derivation, by
having δ act trivially on Z. It is easy to check that R[x; δ] E R1[x; δ]. Thus, by Lemma 4.1, F(R[x; δ]) is
an ideal in R1[x; δ], and in particular is closed under multiplication by x. Finally, apply Lemma 2.2. �

Note that this corollary holds true for more general extensions (such as Ore extensions, see [11] for
the definition), not just those of derivation type. This fact may be useful in studying radicals of such
rings, but we won’t make use of such generality here.

With this corollary in place, we are now in a position to prove that Krempa’s characterization holds
for differential polynomial rings.
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Proposition 4.3. Let F be a radical. This radical has the δ-Amitsur property (1.1) if and only if for
every ring R and every derivation δ on R it happens that

(4.1) F(R[x; δ]) ∩R = 0 implies F(R[x; δ]) = 0.

Proof. This follows by modifying the proof of [10, Theorem 1], but we include the proof for completeness.
The forward direction is clear, so we only do the reverse.

Set A = F(R[x; δ])∩R, which is a δ-ideal of R and so A[x; δ] is a well-defined ring. By Corollary 4.2,
A[x; δ] ⊆ F(R[x; δ]). Thus, F(R[x; δ]/A[x; δ]) = F(R[x; δ])/A[x; δ] by standard radical arguments. On
the other hand R[x; δ]/A[x; δ] ∼= R[x; δ] where R = R/A and δ is the induced derivation on the factor
ring (which exists since A is a δ-ideal). We then have a string of isomorphisms

F(R[x; δ]) ∩R ∼= F(R[x; δ]/A[x; δ]) ∩R/A
∼= (F(R[x; δ])/A[x; δ]) ∩ ((R+A[x; δ])/A[x; δ])

= (F(R[x; δ]) ∩ (R+A[x; δ])) /A[x; δ]

= (F(R[x; δ]) ∩R+A[x; δ])/A[x; δ]

= (A+A[x; δ])/A[x; δ] = 0.

By assuming the implication in the statement of the proposition, we must have

0 = F(R[x; δ]) ∼= F(R[x; δ])/A[x; δ]

and hence

F(R[x; δ]) = A[x; δ] = (F(R[x; δ]) ∩R)[x; δ].

In other words, F has the δ-Amitsur property. �

5. Two different attacks on radicals

There are two distinct ways of showing that the Jacobson radical J satisfies Amitsur’s property. The
first comes from Amitsur’s original characterization found in [1] of the Jacobson radical as J(R[x]) =
N [x] for some nil ideal N E R, and involves a clever isomorphism trick. The second method has its
roots in unpublished work of Bergman [3], and utilizes the fact that the Jacobson radical behaves well
with respect to what are called in the literature finite centralizing extensions (see [15, Section 10.1]).
We will now describe how to transfer these arguments to the situation of skew polynomial extensions
of derivation type, which allows us to show that many radicals have the δ-Amitsur property.

Both arguments begin in the same way. Let F be a radical, and assume that F does not have the
δ-Amitsur property. Thus, we may fix a ring R and a derivation δ on R such that there exists a
polynomial

f(x) ∈ F(R[x; δ]) \ (F(R[x; δ]) ∩R)[x; δ]

with n := deg(f(x)) ≥ 1 minimal among all choices of R and δ. After passing to a factor ring if necessary,
we may as well assume F(R[x; δ]) ∩ R = 0, and hence this minimal degree n occurs over a ring where
the differential version of Krempa’s criterion (4.1) fails. Write f(x) =

∑n
i=0 aix

i ∈ F(R[x; δ]) with each
ai ∈ R. Now, one quickly verifies that the map sending h(x)→ h(x+ 1) is an automorphism of R[x; δ]
(even in the case when R is non-unital), and radicals are invariant under automorphisms, so f(x+ 1) ∈
F(R[x; δ]). But since deg(f(x+ 1)− f(x)) < deg(f(x)), minimality of n implies f(x+ 1)− f(x) = 0.

Expanding yields f(x+ 1)− f(x) = nanx
n−1 + lower order terms, and so nan = 0. If either n = 1

or R is a Q-algebra we have a contradiction (to the fact that an 6= 0), so we may assume n ≥ 2. Letting
m > 1 be the smallest integer with man = 0 and fixing a prime p|m, we can replace f(x) by (m/p)f(x),
and thus pan = 0. But pf(x) ∈ F(R[x; δ]), so by minimality of degree we in fact have that pf(x) = 0.
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It is at this juncture that the arguments of Amitsur and Bergman diverge, so we first describe
Amitsur’s argument. We want to reduce to the case pR = 0. To facilitate such a reduction, we make
the additional assumption that F is hereditary. Then letting

Rp = {r ∈ R : pr = 0} E R

the hereditary assumption gives us

(5.1) F(Rp) = F(R) ∩Rp.

From the harder of the two inclusions in (5.1) we get f(x) ∈ F(R) ∩Rp ⊆ F(Rp), and from the (easier)
other inclusion we see that there are no nonzero polynomials of smaller degree in F(Rp). Thus, after
replacing R by Rp if necessary, we may reduce to the case pR = 0.

In the usual polynomial case one now shows that since f(x+ 1) = f(x) we have f(x) = g(xp−x) for
some polynomial g(x) ∈ R[x]. Not surprisingly, in the differential polynomial case one can still show
that f(x) is a left polynomial in the variable t := xp− x (see [1] for the quick argument). Note that for
any r ∈ R we have

(xp − x)r = r(xp − x) + (δp − δ)r,

since pR = 0. Moreover, because R is an Fp-algebra it is straightforward to check that δp is a derivation
on R, and thus δp − δ is a derivation as well. Hence, g(xp − x) = g(t) ∈ R[t; δp − δ] and clearly
deg(g) < deg(f). In the standard polynomial case, one argues that g(t) belongs to F(R[t]) (often, by
appealing to additional assumptions on the radical F) and then since R[t] ∼= R[x] we have g(x) ∈ F(R[x]),
contradicting the minimality of n. Unfortunately, there is in general no degree preserving isomorphism
between R[x; δ] and R[t; δp − δ]. Thus, Amitsur’s argument often breaks at this point for differential
polynomial rings.

We now turn to the other method. Propitiously, in Bergman’s argument there is no roadblock. (Note
that we are now not necessarily assuming F is hereditary, although if that assumption holds then the
reductions in the previous two paragraphs can still be made.) The idea is simply that we need more
automorphisms which will give us more control over f(x). In that spirit, let q > n be an integer prime
and let ζ = ζq be a primitive qth root of unity (from C). Given any ring A, define A′ := A[ζ] = A⊗ZZ[ζ].
(Here we are abusing notation slightly since A may already contain the complex qth roots of unity; so
one must remember that A[ζ] is shorthand for A ⊗Z Z[ζ].) Note that A sits (isomorphically) as a
(possibly non-unital) subring of A′. In our case, we focus on the ring R[x; δ] ⊗Z Z[ζ] ∼= R′[x; δ′] where
δ′ is the derivation on R′ = R[ζ] determined by the rule δ′(r ⊗ α) = δ(r)⊗ α. In this ring we have the
automorphisms

(5.2) σj(h(x)) = h(x+ ζj)

for j ∈ N. Identifying f(x) with f(x)⊗ 1 ∈ R′[x; δ′], the constant term of f(x+ ζj)− f(x) is exactly

n∑
i=1

ai ⊗ ζij .

Thus

g(x) :=

q−1∑
j=0

ζ−nj
(
f(x+ ζj)− f(x)

)
= qan ⊗ 1 +

q−1∑
j=0

n−1∑
i=1

ai ⊗ ζj(i−n) + higher order terms,
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but by switching the order of summation and noting that ζi−n is also a primitive qth root of unity (for
1 ≤ i ≤ n− 1 since n < q), we have

q−1∑
j=0

n−1∑
i=1

ai ⊗ ζj(i−n) =

n−1∑
i=1

ai ⊗ q−1∑
j=0

(
ζi−n

)j =

n−1∑
i=1

ai ⊗ 0 = 0.

Thus qan is the constant term in g(x).
We now define a property which holds for many radicals. We say that F respects finite cyclotomic

extensions when it happens that

(5.3) for all rings A, and all integer primes q, F(A) = F(A[ζq]) ∩A,

with ζq ∈ C a primitive qth root of unity and A[ζq] := A⊗Z Z[ζq]. Under this assumption, we see that

f(x) ∈ F(R[x; δ]) ⊆ F((R[x; δ])[ζ]) = F(R′[x; δ′])

and hence by Lemma 4.1 (to get closure under multiplication by powers of ζ) we have g(x) ∈ F(R′[x; δ′]).
But deg(g(x)) < deg(f(x)) and so the minimality condition on n tells us that every coefficients of
g(x) is an elements of F(R′[x; δ′]). In particular qan ∈ F((R[x; δ])[ζ]) ∩ R[x; δ] = F(R[x; δ]). But
pan = 0 ∈ F(R[x; δ]) and gcd(p, q) = 1, hence an ∈ F(R[x; δ])∩R = 0, yielding a contradiction. Putting
this all together we have the following result.

Theorem 5.1. If F is a radical which respects finite cyclotomic extensions, then F has the δ-Amitsur
property.

In the case of hereditary radicals, we can make an even nicer statement by arguing along the lines
of [6], as was done in [4] using the stronger notion of normalizing extensions.

Theorem 5.2. Let F be a hereditary radical. Also assume that F respects finite field extensions,
meaning:

For every Fp-algebra A, and every integer m ≥ 1,

F(A) = F(A⊗Fp
Fpm) ∩A.(5.4)

Then F has the δ-Amitsur property.

Proof. We start by working contrapositively. Assume F is a hereditary radical and does not have the
δ-Amitsur property. As in the argument above, we can reduce to the case where (i) R is an Fp-algebra,
(ii) F(R[x; δ])∩R = 0, and (iii) f(x) =

∑n
i=0 aix

i in the set F(R[x; δ])\(F(R[x; δ])∩R)[x; δ] has minimal
degree n ≥ 2.

Now, assume by way of contradiction that F respects finite field extensions. Setting R′ = R⊗Fp
Fpm

with m ≥ n, we obtain

f(x) ∈ F(R[x; δ]⊗Fp
Fpm) ∼= F(R′[x; δ′])

where δ′ is the natural extended derivation. On the ring R′[x; δ′], the map h(x) 7→ h(x + t) is an
automorphism for every t ∈ Fpm . Thus f(x + t) − f(x) ∈ F(R′[x; δ′]) for every t ∈ Fpm . Since
deg(f(x + t) − f(x)) < deg(f(x)), the minimality condition on n implies that the constant term of
f(x + t) − f(x), which is just

∑n
i=1 ait

i, belongs to F(R′[x; δ′]). A Vandermonde matrix argument
(using the fact that pm > n) tells us that each ai ∈ F(R′[x; δ′]) for 1 ≤ i ≤ n. Hence

f(x) ∈ (F(R[x; δ]⊗Fp Fpm) ∩R)[x; δ] = (F(R[x; δ]) ∩R)[x; δ],

giving us the needed contradiction. �
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Remark 5.3. (1) In the argument of Theorem 5.2 we really only need F to respect finite field extensions
Fpm/Fp for a sequence of strictly increasing positive integers m = m1 < m2 < . . .. We will make use of
this small improvement shortly.

(2) Suppose A is an Fp-algebra and F is a radical. Let q 6= p be prime, and let Φq(x) = (xq−1)/(x−1)

be the qth cyclotomic polynomial. Since Φq(x) is separable modulo p, we can write Φq(x) ≡
∏t
i=1 fi(x)

(mod p) where the fi are relatively prime, monic polynomials which are irreducible modulo p. We then
have

A⊗Z Z[ζq] = A⊗Fp
Fp[y]/(Φq(y)) =

t∏
i=1

(
A⊗Fp

Fpni

)
where ni = deg(fi) for each i. An easy computation now shows that if F respects finite field extensions,
then it respect finite cyclotomic extensions (at least when q 6= p).

(3) Finite cyclotomic extensions and finite field extensions are just special cases of finite centralizing
extensions. See Section 10 of [15] for some further nice examples.

We now give an easy example of where these methods apply. (Note that each of the radicals in the
corollary below was already covered by [4].)

Corollary 5.4. The Jacobson radical, Levitzki radical, prime radical, and Brown-McCoy radical each
have the δ-Amitsur property.

Proof. Let F be any of the above radicals. First suppose R does not have 1. We then have F(R) ⊆ F(R1)
since F is hereditary. But R1/R ∼= Z is F-semisimple; so we must have equality F(R) = F(R1). A similar
argument holds if we replace R by R[x; δ] (since, in this case, Z[x] is F-semisimple). So without loss
of generality, we can reduce to the case that R is unital. It is well known that each of these radicals
respects finite cyclotomic extensions in case the ring is unital, see for instance [16, p. 454]. Now just
apply Theorem 5.1. �

As the proof that the Brown-McCoy radical respects finite cyclotomic extensions is by no means
trivial, we give an alternate proof in that case, which may be of independent interest.

Proposition 5.5. The Brown-McCoy radical G has the δ-Amitsur property.

Proof. Since G is a hereditary radical, by Remark 5.3(1) and Theorem 5.2 it suffices to show that
whenever F is a finite field, R is an F -algebra, and K/F is a field extension with [K : F ] = 2, then
G(R) = G(S)∩R where S = R⊗F K. Further, if R is non-unital and R∗ is the Dorroh extension of R
by F , then G(R) ⊆ G(R∗) since R is an ideal in R∗. On the other hand R∗/R ∼= F is Brown-McCoy
semisimple. Thus G(R) = G(R∗), and hence we only need to prove the equality holds in the case when
R is a unital F -algebra and S is a unital overring. Fix an F -basis B = {1, b} for the extension K/F .
We now prove the equality G(R) = G(S) ∩R.

(⊆): Assume by way of contradiction that r ∈ G(R) \G(S). Then r /∈M for some maximal ideal of
S. Since S/M is a simple ring, 1−

∑m
i=1 sirs

′
i ∈M for some si, si ∈ S. Expanding this sum in terms of

the basis B, we have
∑m
i=1 sirs

′
i = r1 + r2b for some r1, r2 ∈ RrR ⊆ G(R), and also 1− r1 − r2b ∈M .

Consider the two-sided ideal R(1− r1)R E R. If this were a proper ideal, it would be contained in a
maximal idealM ′ ofR. But since r1 ∈ G(R) we would also have r1 ∈M ′ and hence 1 = (1−r1)+r1 ∈M ′
which is impossible. Thus R(1 − r1)R = R, so we can write 1 =

∑n
j=1 tj(1 − r1)t′j for some elements

tj , t
′
j ∈ R. Hence

n∑
j=1

tj(1− r1 − r2b)t′j = 1−

 n∑
j=1

tjr2t
′
j

 b = 1− ub ∈M

for some element u ∈ Rr2R ⊆ G(R).
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Since K is a finite field, we can fix an integer k ≥ 2 such that bk = 1. Thus

1− uk = (1− ub)(1 + ub+ u2b2 + · · ·+ uk−1bk−1) ∈M.

But uk ∈ G(R), and so by the same argument as at the beginning of the previous paragraph we have
R(1− uk)R = R. Thus 1 ∈M , giving us the needed contradiction.

(⊇): Assume by way of contradiction r ∈ (G(S)∩R)\G(R). Fix a maximal ideal I of R, with r /∈ I.
Notice that I ⊗F K = I ⊕ Ib is a proper ideal of S, and so is contained in a maximal ideal M of S.
Since r ∈ G(S) we have r ∈ M . But I ⊆ M as well, so R = I + RrR ⊆ M . This yields 1 ∈ M , a
contradiction. �

Remark 5.6. These same techniques fail for the Behrens radical β. By [12, Proposition 3.1] we have
β(S) ∩ R ⊆ β(R) for any unital finite centralizing extension, and so we only care about the reverse
inclusion. However, from the Example following Proposition 3.1 in [12] there is a Behrens radical ring
R which is an R-algebra and β(R) * β(R ⊗R C). This shows that β does not even respect quadratic
field extensions. One might still hold out hope in the finite field case, but in fact the example can be
modified to disprove that case as follows.

Let K be the field of rational functions in the commuting variables xi (for i ∈ Z), with coefficients
in F3(y). Let σ by the F3(y)-automorphism of K which sends xi 7→ xi+1. One verifies that the skew
Laurent polynomial ring (of automorphism type) K[x, x−1;σ] is a simple domain with F3(y) as the
center.

Define H =
(
2,y
F

)
as the quaternion algebra over F = F3(y) with generators i, j and relations given by

i2 = 2, j2 = y, and ij = −ji. This is a non-split algebra, hence is a 4-dimensional division algebra with
center F3(y). The tensor product T = H⊗F3(y) K[x, x−1; δ] is also a central simple F3(y)-algebra. The
remainder of the construction is essentially unchanged from [12] after replacing R by F3(y) and C by
F9(y) everywhere, so we leave those details to the interested reader. Finally, note that H⊗F3(y) F9(y) ∼=
M2(F9(y)) since F9 contains a square-root of 2, and also note that S = R⊗F3(y) F9(y) ∼= R⊗F3

F9.

6. Open Questions

One radical which is conspicuously missing from Corollary 5.4 is the upper nilradical. Amitsur in
1956 proved that the upper nilradical has Amitsur’s property [1], but only in 2014 was a proof finally
found by Smoktunowicz for the fact that the upper nilradical is homogeneous in Z-graded rings [17].
This work was subsequently extended to gradings over semigroups in [14]. Unfortunately, these methods
are somewhat orthogonal to those employed in this paper, and so we ask:

Question 6.1. Does the δ-Amitsur property hold for the upper nilradical?

Perhaps even more difficult is the case of the Behrens radical, for we know that this radical behaves
poorly with respect to field extensions.

Another set of questions involves element-wise characterizations of the ideal F(R[x; δ]) ∩R, when R
has a derivation δ. While much work has been done in the case of the prime radical, there are other
basic radicals which might yield to similar analyses. In particular, we ask:

Question 6.2. If L is the Levitzki radical, is there a simple description of the ideal L(R[x; δ])∩R, for
any ring R with a derivation δ?

Finally, in Section 3 we gave a list of five characterizations of the prime radical, four of which are
now known to generalize extremely well to the differential polynomial case. Thus we ask:

Question 6.3. How does the bounded nilradical behave in differential polynomial rings? Is there a
simple element-wise description of this ideal in terms of the coefficient ring?
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