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Abstract. We show that a Dedekind-finite, semi-π-regular ring with a “nice”
topology is an ℵ0-exchange ring, and the same holds true for a strongly clean
ring with a “nice” topology. We generalize the argument to show that a
Dedekind-finite, semi-regular ring with a “nice” topology is a full exchange
ring. Putting these results in the language of modules, we show that a cohop-
fian module with finite exchange has countable exchange, and all modules with
Dedekind-finite, semi-regular endomorphism rings are full exchange modules.
These results are generalized further.

1. Introduction

The exchange property was first studied in 1964 by Crawley and Jónsson [3], and
is defined for modules as follows: A right k-module Mk has the ℵ-exchange property
if whenever A = M ⊕ N =

⊕
i∈I Ai, with |I| 6 ℵ, then there are submodules

A′i ⊆ Ai, with A = M ⊕ (⊕
i∈I A′i

)
. If M has ℵ-exchange for all cardinals ℵ then

we say M has full exchange. If the same holds just for the finite cardinals, we
say M has finite exchange. It is easy to show that 2-exchange is equivalent to
finite exchange. An outstanding question in module theory is whether or not finite
exchange implies full exchange.

It turns out that the finite exchange property is an endomorphism ring invariant;
putting E = End(Mk), then Mk has finite exchange if and only if EE has finite
exchange. A ring, R, such that RR has finite exchange is called an exchange ring,
following Warfield [14], and this turns out to be a left-right symmetric condition.
Nicholson [9] calls a ring suitable if for each equation x+y = 1 there are (orthogonal)
idempotents e ∈ Rx and f ∈ Ry with e + f = 1. Suitable rings and exchange rings
turn out to be the same objects. It is easy to show that semi-π-regular rings1 are
suitable, and while this is a large class it does not exhaust all suitable rings. Any
corner ring in a suitable ring is suitable, and any direct product of suitable rings is
suitable.

Continuous modules, and hence (quasi-)injective modules, always claim the ex-
change property [6]. Further, quasi-continuous modules with finite exchange have
full exchange [7], [12]. There are many other classes of modules for which finite
exchange implies full exchange, including modules which are direct sums of inde-
composables [15], and modules with abelian endomorphism rings [11]. It also turns
out that square-free modules2 with finite exchange have countable exchange [8].

2000 Mathematics Subject Classification. Primary 16D70, Secondary 13J99.
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1R/J(R) is π-regular, and idempotents lift modulo J(R). An ring R is π-regular, if for each

x ∈ R there is some n ∈ Z+ so that xn is von Neumann regular.
2No non-zero submodule is isomorphic to a square X ⊕X.
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Any endomorphism ring, E = End(M), is endowed with a ring topology, called
the finite topology, in which a basis of neighborhoods of zero is given by annihilators
of finite subsets of M . One says that a collection {xi}i∈I of endomorphisms in E is
summable, if for each m ∈ M the set {i |xi(m) 6= 0} is finite. One may then easily
define

∑
i∈I xi as the map m 7→ ∑

i∈I xi(m). Central to the study of exchange
modules is the following proposition:

Proposition 1.1 ([15, Proposition 3]). For any given cardinal, ℵ, the following
are equivalent:

(1) M has the ℵ-exchange property.
(2) If we have

A = M ⊕N =
⊕

i∈I

Ai

with Ai
∼= M for all i ∈ I, |I| 6 ℵ, then there are submodules A′i ⊆ Ai such

that
A = M ⊕

⊕

i∈I

A′i.

(3) Given a summable family {xi}i∈I of elements of E, with
∑

i∈I xi = 1,
and with |I| 6 ℵ, then there are orthogonal idempotents ei ∈ Exi with∑

i∈I ei = 1.

Now, let R be a topological ring with a linear, Hausdorff topology. This means
that there is a ring topology with a basis of neighborhoods of zero, say U, consisting
of left ideals, with

⋂
U∈U U = (0). We say that the collection {xi}i∈I of elements

of R is summable to r ∈ R, written as
∑

i∈I xi = r, if for every U ∈ U there is a
finite set F ′ ⊆ I such that

∑
i∈F xi − r ∈ U for all finite sets F ⊇ F ′. The finite

topology on E is linear and Hausdorff, and this new notion of summability agrees
with the one defined above. Following [8], we can now extract from Proposition 1.1,
property (3), a ring-theoretic version of ℵ-exchange.

Definition 1.2. Let R be a ring with a linear, Hausdorff topology. We say that
R is an ℵ-exchange ring if for each summable family {xi}i∈I in R, with |I| 6 ℵ
and with

∑
i∈I xi = 1, there are summable, orthogonal idempotents {ei}i∈I with

ei ∈ Rxi and
∑

i∈I ei = 1.3 If this holds for all cardinalities ℵ, we say the ring is a
full exchange ring.4

Notice that, by (1)⇔(3) in Proposition 1.1, a module has ℵ-exchange if and only
if E (with the finite topology) is an ℵ-exchange ring. Also notice, in the definition
above we require {ei}i∈I to be a summable family. When trying to verify that a
ring is an ℵ-exchange ring, we often need to assume some condition which forces
families of this sort to be summable. The following is such a condition: We say
a summable family {xi}i∈I is left multiple summable if for every arbitrary family
{ri}i∈I , the collection {rixi}i∈I is also summable. We say that a topology is left
multiple summable if all summable families are left multiple summable. Finally, we

3The definition we have given is not equivalent to the one given in [8]. We’ve added the word
“orthogonal,” and removed the word “complete.” However, from a private correspondence with
the first author of [8], it was made clear that the definition given here is the one they intended.

4One easily sees that the notion of a full exchange ring is not equivalent to the notion of an
exchange ring, since the former requires a ring topology to define. However, to avoid any confusion
we will always refer to exchange rings as suitable rings.
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say that a topological ring, R, has a nice topology if the topology is linear, Hausdorff,
and left multiple summable. One can easily show that a complete, linear, Hausdorff
topology is nice. We work with nice ring topologies rather than complete, linear,
Hausdorff topologies simply for sake of broader generality. However, nice topologies
are very nearly complete as follows:

Changing the terminology of [8], we say that a family {xi}i∈I is S-Cauchy if for
each U ∈ U there is a finite set, FU , with ai ∈ U for all i /∈ FU . Note that the
definition of S-Cauchy is weaker than the definition of Cauchy that is usually given
(hence the change in terminology from [8]). For a general introduction to Cauchy
families and filters in topological rings the reader is referred to [1]. It is well known
that a summable family is always S-Cauchy, and the converse is true if the ring is
complete [2, Chapter 3]. If we replace completeness with left multiple summability
we still have the converse.

Lemma 1.3. Let R be a topological ring with a linear, Hausdorff topology. Every
S-Cauchy family is summable if and only if the ring topology on R is left multiple
summable.

Proof. The forward direction is easy since U is made up of left ideals, so left multi-
ples of S-Cauchy families are still S-Cauchy. For the other direction let X = {xi}i∈I

be an S-Cauchy family. For each U ∈ U fix a finite set FU ⊆ I so that xi ∈ U for
each i /∈ FU . Let I ′ be an copy of I, disjoint from I. For each subset A ⊆ I,
let A′ ⊆ I ′ be the corresponding subset under the identification of I with I ′. Let
T = {xi,−xi′}i∈I,i′∈I′ , so T is the disjoint union of X and −X. Then we claim that
T is summable and sums to 0. In fact, for each finite set F ⊇ FU ∪ F ′U we see that∑

i∈F∩I xi +
∑

i′∈F∩I′ −xi′ ∈ U . Thus T satisfies the definition of summability.
By left multiple summability, we can multiply the elements of T ∩X by 1 and

the elements of T ∩ (−X) by 0, and we still have a summable family. But this new
family is just X (along with extra copies of 0), which proves the claim. ¤

In §2 we develop some machinery that allows us to work recursively with suitable
rings. In §3 we describe a general construction which shows that certain classes of
nice topological rings are ℵ0-exchange rings. Then in §4 we generalize the construc-
tion to show full exchange, as long as two technical conditions are met. We do some
specific examples in §6, but before that we push the argument through the Jacobson
radical in §5. These results are reinterpreted in module theoretic language in §7.
We close with some results on abelian rings and commutative rings in §8 and then
some final remarks in §9, where we provide a counter-example to the converse of
Theorem 3.1.

Hearty thanks go to T.Y. Lam for his insights, suggestions and careful reading of
many manuscripts, George Bergman for providing the impetus behind Lemma 1.3,
Alex Dugas for his suggestions on how to generalize many of the results, and the
referee for his careful reading and finding those pesky typos.

2. Tools for Suitable Rings

Throughout this paper we let k be a ring, Mk be a right k-module, and put
E = End(Mk), which acts on the left of M . If we have two modules N and N ′ we
write N ⊆⊕ N ′ to mean that N is a direct summand of N ′. Also throughout, we
let R be a ring, U(R) the group of units, and J(R) the Jacobson radical. Rings are
associative with 1, and modules are unital.
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In our study of ℵ-exchange rings, we first investigate the behavior of idempotents
in suitable rings. To begin, we define a useful equivalence relation on idempotents,
as in [11, §5].

Definition 2.1. Let e, e′ ∈ R be idempotents. We say that e and e′ are left
associate if e′e = e′ and ee′ = e.5 We write this relation as e ∼` e′, and it is easy
to check that this is an equivalence relation. One also has the dual notion of right
associate idempotents, which we denote by e ∼r e′.

Lemma 2.2. Let e, e′ ∈ R be idempotents. The following are equivalent:

(1) e ∼` e′.
(2) Re = Re′.
(3) e′ = e + (1− e)re for some r ∈ R.
(4) e′ = ue for some u ∈ U(R).
(5) e′ = ue for some u ∈ U(R), with u(1− e) = (1− e).
(6) (1− e) ∼r (1− e′).

Proof. The equivalence of properties (1) through (4) and (6) is a simple exercise
[La2, Exercise 21.4]. Clearly (5) implies (4). Finally we show (3) implies (5). By
hypothesis e′ = e+(1− e)re for some r ∈ R. Putting u = 1+(1− e)re, we see that
e′ = ue, u is a unit with inverse u−1 = 1− (1− e)re, and u(1− e) = (1− e) ¤

As an aside, although we don’t need any further properties of the unit con-
structed above it is also true that u(1 − e′) = (1 − e′), eu = e, e′u = e′, and
(1− e)u−1 = 1− e′.

The next two lemmas give us computational tools we will use to work recursively
with suitable rings. They were proven in [11, Lemmas 4 and 5], but for completeness
we reproduce the proofs here.

Lemma 2.3. Let R be a suitable ring, and let x1+x2+x3 = 1 be an equation in R.
Suppose that x1 is an idempotent. Then there are pair-wise orthogonal idempotents
e1 ∈ Rx1, e2 ∈ Rx2, and e3 ∈ Rx3, such that e1 + e2 + e3 = 1 and x1 ∼` e1.

Proof. Let f = 1 − x1, and multiply by f on the left and right of x1 + x2 + x3 =
1 to obtain fx2f + fx3f = f . Since corner rings in suitable rings are suitable
[9, Proposition 1.10], fRf is suitable. Hence, there are orthogonal idempotents
f2 ∈ fRf(fx2f) and f3 ∈ fRf(fx3f) summing to f , the identity in fRf . Write
f2 = fr2fx2f and f3 = fr3fx3f for some r2, r3 ∈ R.

Let e2 = f2r2fx2 ∈ Rx2 and let e3 = f3r3fx3 ∈ Rx3. By an easy calculation
we see that e2 and e3 are orthogonal idempotents. Let e1 = 1 − e2 − e3, so e1 is
orthogonal to e2 and e3, with e1 + e2 + e3 = 1. Then

e1x1 = (1− e2 − e3)(1− f) = 1− e2 − e3 − f + e2f + e3f

= e1 − f + f2 + f3 = e1 − f + f = e1,

so e1 ∈ Rx1. Finally, since fe2 = e2 and fe3 = e3, we see x1e1 = x1(1− e2− e3) =
x1. ¤

5In [11] we called such idempotents left strongly isomorphic, since this relation strengthens the
notion of isomorphic idempotents. However, our new terminology seems more appropriate in light
of Lemma 2.2, property (4).
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Lemma 2.4. Let e, e′ ∈ R be idempotents, with e ∼` e′. Assume R has a linear,
Hausdorff topology. Also assume that e =

∑
i∈I gi where {gi}i∈I is a summable

family of orthogonal idempotents. Then {e′gi}i∈I is a summable family of orthogo-
nal idempotents, summing to e′, with gi ∼` e′gi. Further, if e′ = ue then e′gi = ugi.
Finally, if f is any idempotent orthogonal to e, then f is orthogonal to each gi.

Proof. Notice that gie = gi = egi and ee′ = e. Therefore

(e′gi)(e′gj) = e′(gie)e′gj = e′gi(ee′)gj = e′giegj = e′gigj = δi,je
′gi.

So they are orthogonal idempotents. Also gi(e′gi) = (gie)(e′gi) = giegi = gi and
clearly (e′gi)gi = e′gi. Thus gi ∼` e′gi. If e′ = ue then e′gi = uegi = ugi. The final
statement is another easy calculation. ¤

It will turn out that we will be working with families of idempotents that are
“almost” orthogonal, which we want to modify into truly orthogonal families. The
following lemmas give us the mathematical framework to make this happen.

Lemma 2.5. Let {ei}i∈I be a summable family of idempotents in a ring, R, with a
linear, Hausdorff topology, and assume I is well-ordered. Suppose that eiej ∈ J(R)
whenever i < j, and that

∑
i∈I ei = u ∈ U(R). Then {u−1ei}i∈I is a summable

family of orthogonal idempotents, summing to 1.

Proof. Follows from [8, Lemma 8]. ¤

Lemma 2.6. Let {ei}i∈I be a summable family of idempotents in a ring, R, with
a linear, Hausdorff topology, and assume I is well-ordered. Put e =

∑
i∈I ei and

suppose that eiej = 0 whenever i < j. If enr = 0, for some r ∈ R and some
n ∈ Z+, then we have eir = 0 for all i ∈ I. In particular, er = 0.

Proof. We proceed by induction. Since eiej = 0 for i < j, this implies e1e = e1

(where 1 is the first element of I). Therefore e1e
n = e1, and so e1r = e1e

nr = 0.
This finishes the base case.

Now, suppose that eir = 0 for all i < β. Then er =
(∑

i>β ei

)
r. Again since

eiej = 0 for i < j, we have

en−1


∑

i>β

ei


 = en−2


∑

i<β

ei +
∑

i>β

ei





∑

i>β

ei




= en−2


∑

i>β

ei




2

= · · · =

∑

i>β

ei




n

.

So,

0 = eβenr = eβen−1


∑

i>β

ei


 r = eβ


∑

i>β

ei




n

r = eβr.

This finishes the inductive step. It is now clear that er = 0 also. ¤

Lemma 2.7. Let R be a suitable ring with a linear, Hausdorff topology. Then J(R)
is closed.

Proof. This is [8, Lemma 11]. The lemma they prove is for endomorphism rings,
but the argument already works in this more general situation. ¤
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Lemma 2.8. Let R be a suitable ring, and put R = R/J(R). If ε ∈ Rx is an
idempotent, then there is an idempotent e ∈ Rx with e = ε.

Proof. Follows easily from [8, Corollary 7]. ¤

3. ℵ0-Exchange Rings

The motivation for our first result comes from a simple construction showing
that 2-exchange is equivalent to finite exchange for modules, based upon ideas in
[9]. Unfortunately, the method fails when trying to pass to countable exchange. In
the course of the proof we construct an element of our ring which we need to be a
unit. For large classes of suitable rings this element will be a unit, and so we can
show that these rings are ℵ0-exchange rings.

Theorem 3.1. Let R be a suitable ring with a nice topology. If the condition (∗)
(which is defined and boxed below) holds then R is an ℵ0-exchange ring.

Proof. Let {xi}i∈Z+ be a summable family of elements in R, with
∑∞

i=1 xi = 1.
For notational ease, set yj =

∑
i>j xi. For each j ∈ Z+ we will construct elements

ei,j ∈ Rxi (for i 6 j), fj ∈ Ryj , and vj ∈ U(R) such that the following conditions
hold:

(A) The family {e1,j , e2,j , . . . , ej,j , fj} consists of orthogonal idempotents that
sum to 1.

(B) For all i 6 j, vjei,i = ei,j and vjfj = fj .
Set v1 = 1. Since R is suitable, the equation x1 + y1 = 1 implies that there are

orthogonal idempotents e1,1 ∈ Rx1 and f1 ∈ Ry1 with e1,1 + f1 = 1. It is easy to
check that condition (A) holds for j = 1, and condition (B) holds trivially in this
case. This finishes the base case. Suppose, by induction, we have fixed elements
ei,j ∈ Rxi (for all i 6 j), fj ∈ Ryj , and vj ∈ U(R) satisfying the conditions above,
for each j 6 n. Writing fn = rnyn for some rn ∈ R, we have

1 = e1,n + · · ·+ en,n + fn = (e1,n + · · ·+ en,n) + rnxn+1 + rnyn+1.

Lemma 2.3 allows us to pick pair-wise orthogonal idempotents

h1 ∈ R(e1,n + · · ·+ en,n), h2 ∈ Rrnxn+1, h3 ∈ Rrnyn+1

with h1 + h2 + h3 = 1 and h1 ∼`

∑n
i=1 ei,n. By Lemma 2.2, property (5), there

exists un+1 ∈ U(R) such that un+1(e1,n + · · · + en,n) = h1 and un+1fn = fn.
Putting ei,n+1 = un+1ei,n ∈ Rxi (for i 6 n), en+1,n+1 = h2 ∈ Rxn+1, and fn+1 =
h3 ∈ Ryn+1, Lemma 2.4 shows that condition (A) above holds.

By Lemma 2.2, property (6), (en+1,n+1 + fn+1) is right associate to fn, hence
fnen+1,n+1 = en+1,n+1 and fnfn+1 = fn+1. Putting vn+1 = un+1vn, and remem-
bering un+1fn = fn, we calculate

vn+1fn+1 = (un+1vn)(fnfn+1) = un+1vnfnfn+1

= un+1fnfn+1 = fnfn+1 = fn+1

and similarly vn+1en+1,n+1 = en+1,n+1. Finally, for i < n + 1,

vn+1ei,i = un+1vnei,i = un+1ei,n = ei,n+1.

Therefore, condition (B) holds. This finishes the inductive step.
So we have constructed elements ei,j (for i 6 j), fj , and vj satisfying the prop-

erties above, for all j ∈ Z+. Since {xi}i∈Z+ is summable, and the topology is left



COUNTABLE EXCHANGE AND FULL EXCHANGE RINGS 7

multiple summable, the family {ei,i}i∈Z+ is also summable. We put ϕ =
∑

i∈Z+
ei,i

and assume that the following condition holds:

(∗) ϕ is a unit.

Now, for i < j we have ei,iej,j = v−1
j vjei,iej,j = v−1

j ei,jej,j = 0 ∈ J(R). So, by
Lemma 2.5, {ϕ−1ei,i}i∈Z+ is a summable, orthogonal set of idempotents, summing
to 1. Finally, ei = ϕ−1ei,i ∈ Rxi, so R satisfies the definition of an ℵ0-exchange
ring. ¤

There are quite a few properties that the element ϕ has, even if we don’t assume
(∗) holds. For example, it is a convergent limit of units. In fact, since limn→∞ yn =
0, and the topology is linear, we have limn→∞ fn = 0. Therefore,

ϕ =
∞∑

i=1

ei,i = lim
n→∞

(
n∑

i=1

ei,i + fn

)
= lim

n→∞
v−1

n

(
n∑

i=1

ei,n + fn

)
= lim

n→∞
v−1

n .

A natural question to ask is what convergent limits of units look like in general.
We claim that in any ring with a linear, Hausdorff topology, a convergent limit of
units is always a left non-zero-divisor. To see this, let w = limi∈I wi with each wi a
unit, and with I directed. Let U ∈ U be an arbitrary, open (left ideal) neighborhood
of 0. If wr = 0 then limi∈I wir = 0 and so, in particular, for a large index N we
have wNr ∈ U . But U being a left ideal means r = w−1

N wNr ∈ U . Therefore
r ∈ ⋂

U∈U U = (0). So r = 0.
Theorem 3.1 gives us the following chain of corollaries.

Corollary 3.2. Let R be a suitable ring with a nice topology, and set R = R/J(R).
If RR is cohopfian, then R is an ℵ0-exchange ring.

Proof. We have ϕ = limn→∞ v−1
n where vn ∈ U(R). By Theorem 3.1, it suffices to

show that ϕ is a unit. An element r ∈ R is a unit if and only if r ∈ R is a unit.
Therefore it suffices to show that ϕ is a unit. Further, by Lemma 2.7, we have
ϕ = limn→∞ v−1

n in the quotient topology. Since ϕ is a convergent limit of units it
is a left non-zero-divisor. By [4, Exercise 4.16], which is an exercise we leave to the
reader, RR is cohopfian if and only if all left non-zero-divisors are units. Thus ϕ is
a unit. ¤
Corollary 3.3. Let R be a ring with a nice topology. If R is a Dedekind-finite,
semi-π-regular ring then R is an ℵ0-exchange ring.

Proof. All semi-π-regular rings are suitable rings. So, from the previous corollary
it suffices to show that RR is cohopfian.

Fix x ∈ R which is a left non-zero-divisor. Since R is π-regular, fix n > 1,
and y ∈ R, such that xn = xnyxn. Then xn(1 − yxn) = 0. Since x is a left
non-zero-divisor so is xn. Therefore 1 = yxn, and so x is left-invertible. From the
Dedekind-finiteness, which passes to R, x is invertible. ¤
Corollary 3.4. Let R be a ring with a nice topology. If R is a strongly π-regular
ring then R is an ℵ0-exchange ring.

Proof. Strongly π-regular rings are always Dedekind-finite and π-regular. ¤
There is another nice property that ϕ exhibits, arising from the fact it is a sum

of “almost” orthogonal idempotents. For this we need another lemma.
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Lemma 3.5. Let {ei}i∈I be a summable family of idempotents in a ring, R, with
a linear, Hausdorff topology, and assume I is well-ordered. Suppose that eiej = 0
whenever i < j, and set ϕ =

∑
i∈I ei. Let K ⊆ R be a right ideal such that

(1− ϕ)K ⊇ K. Then ϕK = (0).

Proof. It suffices to show that eiK = (0) for each i ∈ I. We work by induction. Let
r ∈ K. Then r = (1 − ϕ)r′ for some r′ ∈ K. Hence e1r = e1(1 − ϕ)r′ = 0, where
1 is the first element of I. Since r ∈ K is arbitrary, e1K = (0). Suppose now, by
induction, that eiK = (0) for all i < β. Then

eβr = eβ(1− ϕ)r′ = eβr′ −
∑

i>β

eβeir
′ = −

∑

i>β

eβeir
′ = 0.

Hence eβK = (0). This finishes our induction. ¤

Recall, an element r ∈ R is clean when we can write r = u + e, where u ∈ U(R)
and e2 = e ∈ R. It is strongly clean if we can choose u and e so that they commute:
ue = eu. A ring is clean (respectively, strongly clean) when every element is clean
(respectively, strongly clean). Nicholson proved that all clean rings are suitable [9,
Proposition 1.8], and every strongly π-regular ring is strongly clean [10, Theorem
1]. Using these facts we can strengthen Corollary 3.4 to the following:

Corollary 3.6. Let R be a ring with a nice topology. If R/J(R) is strongly clean,
and idempotents lift modulo J(R), then R is an ℵ0-exchange ring.

Proof. First, R is a suitable ring by [9, Proposition 1.5].6 So it suffices to show that
ϕ =

∑∞
i=1 ei,i (as constructed in Theorem 3.1) is a unit. Second, since ϕ is a unit

if and only if ϕ is a unit, it suffices to show the latter. Third, by Lemma 2.7, we
have ϕ =

∑∞
i=1 ei,i.

Now, since ϕ is strongly clean, we can write ϕ = u+e with u ∈ U(R), e2 = e ∈ R,
and ue = eu. We compute (1− ϕ)e = (1 − u − e)e = −ue. Hence (1− ϕ) acts
as the unit −u on eR. Further, since u and e commute, this means (1− ϕ) is an
automorphism of eR. By Lemma 3.5 (applied to R), ϕeR = (0) and in particular
ϕe = 0. But ϕ is a limit of units, and hence a left non-zero-divisor. This means
e = 0, so ϕ = u + e = u is a unit. ¤

Any strongly clean ring (with a nice topology) satisfies the conditions of this
corollary. On the other hand, by [13] there are rings which are strongly clean
modulo their radicals, but not strongly clean themselves (although idempotents lift
through the radical). Thus, the hypotheses of the lemma are not superfluous.

Although we stated Lemma 3.5 for a general index set (so that we can use the
result in later sections) in this section we are most interested in the case when I =
Z+. Supposing this equality holds, one can improve Lemma 3.5 in a straightforward
manner to show that ϕK = 0 where K =

⋂∞
i=1(1 − ϕ)iR. In particular, if ϕ is a

left non-zero-divisor we must have K = 0. This yields:

Proposition 3.7. Let R be a suitable ring with a nice topology. If R is such that,
for x ∈ R,

⋂∞
i=1(1− x)iR = 0 implies x ∈ U(R), then R is an ℵ0-exchange ring.

6In fact, R is clean.
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4. Full Exchange Rings

When trying to push the proof of Theorem 3.1 up to full exchange one runs into
problems when passing through limit ordinals. However, we can get around these
roadblocks by assuming a few more conditions. Just as in the proof of Theorem 3.1,
we will define these conditions in the body of the proof.

Theorem 4.1. Let R be a suitable ring with a nice topology. If R satisfies condi-
tions (∗1) and (∗2) (defined and boxed below) then R is a full exchange ring.

Proof. Let {xi}i∈I be a summable collection of elements of R, summing to 1, with I
an indexing set of arbitrary cardinality. Without loss of generality, we may assume
that I is a well-ordered set with first element 1 and last element κ. Put yj =

∑
i>j xi

and y′j = xj + yj =
∑

i>j xi.
For each j ∈ I we will inductively construct elements ei,j ∈ Rxi (for i 6 j),

fj ∈ Ryj , and vj ∈ U(R) such that the following two conditions hold:
(A) The family {e1,j , e2,j , . . . , ej,j , fj} consists of summable, orthogonal idem-

potents, summing to 1.
(B) For each i 6 j, vjei,i = ei,j and vjfj = fj .
Put v1 = 1. Since R is suitable the equation x1 + y1 = 1 implies that there are

orthogonal idempotents e1,1 ∈ Rx1 and f1 ∈ Ry1 with e1,1 + f1 = 1. This provides
the base step of our inductive definition. Now suppose (by transfinite induction)
that for all j < α we have constructed elements ei,j (for all i 6 j), fj , and vj

satisfying the conditions above. We have two cases.
Case 1. α is not a limit ordinal.
In this case we proceed exactly as in the proof of Theorem 3.1. Writing fα−1 =

rα−1yα−1 for some rα−1 ∈ R, we have

1 =
∑

i<α

ei,α−1 + fα−1 =
∑

i<α

ei,α−1 + rα−1xα + rα−1yα.

Lemma 2.3 allows us to pick orthogonal idempotents

h1 ∈ R

(∑

i<α

ei,α−1

)
, h2 ∈ Rrα−1xα, h3 ∈ Rrα−1yα

with h1 + h2 + h3 = 1 and h1 ∼`

∑
i<α ei,α−1. By Lemma 2.2, property (5), there

exists uα ∈ U(R) such that h1 = uα

(∑
i<α ei,α−1

)
and uαfα−1 = fα−1. Putting

ei,α = uαei,α−1 ∈ Rxi (for i < α), eα,α = h2 ∈ Rxα, and fα = h3 ∈ Ryα, then
Lemma 2.4 implies that these are orthogonal idempotents. Also clearly

∑

i6α

ei,α + fα = 1.

Therefore, condition (A) holds when j = α. Checking that condition (B) holds for
vα = uαvα−1 is done exactly as before. This completes the inductive definition of
the elements we need, when α is a successor ordinal.

Case 2. α is a limit ordinal.
This case is much harder. Set ϕ =

∑
i<α ei,i. We calculate that if i < j < α,

then ei,iej,j = v−1
j vjei,iej,j = v−1

j ei,jej,j = 0. So ϕ is a sum of “almost” orthogonal
idempotents. We assume

(∗1) There exists an idempotent p such that ϕ′ = ϕ + p is a unit and ϕp = 0.
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For notational ease put v′α = (ϕ′)−1. From our work above, and Lemma 2.6, we
see that ei,ip = 0 for all i < α. This means that the decomposition ϕ′ =

∑
i<α ei,i+p

satisfies the hypotheses of Lemma 2.5. This yields
∑

i<α v′αei,i + v′αp = 1, where
the summands are orthogonal idempotents. Put e′i,α = v′αei,i for all i < α, and
f ′α = v′αp. The following argument shows that f ′α = p, and in particular v′αf ′α = f ′α,
which we will need later. First note that v′αpe′i,α = f ′αe′i,α = 0 and so pe′i,α = 0.
We already saw ei,ip = 0 and so e′i,αp = 0 for all i < α. Hence r =

∑
i<α e′i,α + p is

a sum of orthogonal idempotents, and hence an idempotent. Further, if rs = 0 for
some s ∈ R, then orthogonality implies e′i,αs = 0 and ps = 0. Then (ϕ + p)s = 0
and so s = 0. But this means r is a left non-zero-divisor and an idempotent, so
r = 1. Thus, p = 1−∑

i<α e′i,α = f ′α.
We also claim fjf

′
α = f ′α for all j < α. To see this we compute

ei,jf
′
α = vjei,if

′
α = vjv

′−1
α v′αei,if

′
α = vjv

′−1
α e′i,αf ′α = 0

and so

(1) fjf
′
α =


1−

∑

i6j

ei,j


 f ′α = f ′α.

Notice that we put hash marks on the idempotents we constructed. This is
because they are not quite the ones we set out to construct. We need a few more
modifications. The first problem with the idempotents we constructed above is that
f ′α is not a left multiple of y′α. We can fix this problem by finding a new idempotent
f ′′α ∈ Ry′α, which is right associate to f ′α. The construction is as follows:

For use shortly, we note

(2) lim
i→α

yi = y′α,

where by limi→α yi we mean the limit in the ring topology on R. (More formally,
if U is the given basis of neighborhoods of zero, then for each U ∈ U there is some
index j ∈ I, j < α, so that for each i ∈ (j, α), yi − y′α ∈ U .) Also by construction,
for i < α we have fi ∈ Ryi, and so we can fix elements ri ∈ R with fi = riyi. We
claim that left multiplication by y′α gives an isomorphism f ′αR → y′αf ′αR. It suffices
to show that if y′αf ′αr = 0 then f ′αr = 0. Using equations (1) and (2) above, we see

f ′αr = lim
i→α

fif
′
αr = lim

i→α
riyif

′
αr = lim

i→α
riy

′
αf ′αr = 0

as claimed. Let r′α : y′αf ′αR → f ′αR be the isomorphism which is the inverse to
y′α|f ′αR. In our calculation above, we saw that r′α = limi→α ri|y′αf ′αR. Notice that, a
priori, the map r′α does not extend to an element in R = End(RR), since this limit
might not converge on all of R. However, if r′α did extend to an element in R, that
would be equivalent to:

(∗2) There exists r′α ∈ R such that r′αy′αf ′α = f ′α.

We assume (∗2) holds.
Set f ′′α = f ′αr′αy′α. We do the calculations to check that f ′′α is right associate to

f ′α and is an idempotent. First,

f ′′αf ′′α = f ′αr′αy′αf ′αr′αy′α = f ′α(r′αy′αf ′α)r′αy′α = f ′αf ′αr′αy′α = f ′′α .

Second, one easily sees f ′αf ′′α = f ′′α . Finally,

f ′′αf ′α = f ′αr′αy′αf ′α = f ′α(r′αy′αf ′α) = (f ′α)2 = f ′α.
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We have shown f ′α ∼r f ′′α . Therefore the equivalence of properties (1) and (6) in
Lemma 2.2 implies (1− f ′α) ∼` (1− f ′′α). So, again by Lemma 2.2, property (5), we
pick some unit v′′α such that v′′α(1− f ′α) = 1− f ′′α and v′′αf ′α = f ′α. Set e′′i,α = v′′αe′i,α,
for i < α. We have

∑
i<α e′′i,α + f ′′α = 1, and {e′′i,α (∀ i < α), f ′′α} is a summable

family of orthogonal idempotents by Lemma 2.4.
With all the machinery we have built up, it is now an easy matter to construct

ei,α (for each i 6 α), fα, and vα. To do so, notice we have the equation

1 =
∑

i<α

e′′i,α + f ′′α =
∑

i<α

e′′i,α + r′αxα + r′αyα.

Now we use exactly the same ideas as in Case 1 to construct the elements we need.
Lemma 2.3 allows us to pick orthogonal idempotents

h1 ∈ R

(∑

i<α

e′′i,α

)
, h2 ∈ Rr′αxα, h3 ∈ Rr′αyα

with h1 + h2 + h3 = 1 and h1 ∼`

∑
i<α e′′i,α. By Lemma 2.2, property (5), there

exists uα ∈ U(R) such that h1 = uα

(∑
i<α e′′i,α

)
and uαf ′′α = f ′′α . Putting ei,α =

uαe′′i,α ∈ Rxi (for i < α), eα,α = h2 ∈ Rxα, and fα = h3 ∈ Ryα, then Lemma 2.4
implies that these are orthogonal idempotents. Also clearly∑

i6α

ei,α + fα = 1.

Therefore, condition (A) holds when j = α.
We put vα = uαv′′αv′α. It is clear that vαei,i = ei,α for i < α, so we just need

to see that left multiplication by vα acts as the identity on eα,α and fα. First,
remember f ′α = v′αf ′α. Second, we chose v′′α so that v′′αf ′α = f ′α holds. Third, uα was
chosen so that uαf ′′α = f ′′α . Finally, eα,α and fα are both fixed by left multiplication
by f ′′α and f ′α since (eα,α + fα) ∼r f ′′α ∼r f ′α. Therefore,

vαfα = (uαv′′αv′α)(f ′αfα) = uα(v′′αv′αf ′α)fα

= uαf ′αfα = uαfα = uα(f ′′αfα) = f ′′αfα = fα

and similarly, vαeα,α = eα,α. This finishes Case 2.
By transfinite induction, we have constructed the elements we wanted for all

j ∈ I. Recall that we well-ordered I so that it had a last element κ. Let ei = ei,κ

for each i 6 κ. Then {ei}i∈I is a summable family of orthogonal idempotents,
summing to 1− fκ = 1 (since fκ ∈ Ryκ = (0)), with ei ∈ Rxi for each i ∈ I. This
completes the proof. ¤

5. Lifting through the Jacobson Radical

Mohamed and Müller have shown in [6] that if M is a module such that E/J(E)
is regular and abelian, with idempotents lifting modulo J(E), then M has full
exchange. In particular, they use this to establish that continuous modules have
full exchange. Similarly, one way of further generalizing Theorem 4.1 is to try and
lift the argument through the Jacobson radical.

Let R be a suitable ring with a nice topology, and set R = R/J(R). Using the
same constructions and terminology as in Theorem 4.1, consider the following two
conditions:

(∗′1) There exists an idempotent ρ ∈ R such that ϕ + ρ is a unit and ϕρ = 0.
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and

(∗′2) There exists r′α ∈ R such that r′αy′αf
′
α = f

′
α.

Theorem 5.1. Let R be a suitable ring with a nice topology. Then (∗′1) ⇐⇒ (∗1).
Also, if (∗′1) and (∗′2) both hold then R is a full exchange ring.

Proof. We show (∗′1) =⇒ (∗1), noting that the converse is trivial. Suppose ρ ∈ R
is chosen so that (∗′1) holds. Since R is suitable, idempotents lift modulo J(R).
Hence, there is some idempotent p̃ ∈ R such that p̃ = ρ. Set u = ϕ + p̃. Notice
that u is a unit, since it is a unit modulo J(R) by hypothesis. Lemma 2.5 tells us
that

∑
i<α u−1ei,i + u−1p̃ = 1, where the summands are orthogonal idempotents.

Setting p = u−1p̃, then we have u−1ei,ip = 0 for all i < α, and hence ei,ip = 0 for
all i < α. In particular, ϕp = 0.

The same argument we used in Theorem 4.1 to show that p = f ′α (under the old
use of p) shows that ρ = u−1ρ. Therefore, ϕ′ = ϕ + p modulo J(R) equals ϕ + ρ,
and thus must be a unit.

We now show (∗′1) + (∗′2) =⇒ R is a full exchange ring. First note that R is a
ring with a linear, Hausdorff topology, by Lemma 2.7. Let {xi}i∈I be a summable
family of R, summing to 1. Then, {xi}i∈I is a summable family summing to 1, and
is left-multiple summable since {xi}i∈I is. Therefore, the same argument as used
in the proof of Theorem 4.1, now applied to R, shows that we can find orthogonal
idempotents εi ∈ Rxi summing to 1. (In Theorem 4.1 we didn’t need R to have
a left multiple summable topology, only that {xi}i∈I is a left multiple summable
family.)

By Lemma 2.8, we can lift each εi to an idempotent e′i ∈ Rxi. These are still
summable idempotents, summing to a unit (since modulo J(R) they sum to 1).
Letting u =

∑
i∈I e′i then Lemma 2.5 says that {u−1e′i}i∈I is a summable family

of orthogonal idempotents summing to 1. Clearly, ei = u−1e′i ∈ Rxi, so we are
done. ¤

6. Examples of Full Exchange Rings

We need to find rings that satisfy (∗1) and (∗2) (or their counterparts). If we
assume RR (respectively, RR) has (C2), then (∗2) (respectively, (∗′2)) holds, since we
have y′αf ′αR ∼= f ′αR ⊆⊕ RR (respectively, the same equation with bars everywhere).
Not surprisingly, Dedekind-finite, semi-π-regular rings satisfy (∗′1). So we have:

Theorem 6.1. Let R be a ring with a nice topology. If R is Dedekind-finite, semi-
π-regular, and either RR or RR has (C2), then R is a full exchange ring.

Proof. Clearly R is a suitable ring. Since either (∗2) or (∗′2) holds, then by Theo-
rems 4.1 and 5.1 it suffices to show (∗′1) holds.

We have ϕ is π-regular, and so ϕnψϕn − ϕn ∈ J(R) for some ψ ∈ R and some
n > 1. In particular, ρ = 1 − ψϕn is an idempotent. Now, ϕ =

∑
i<α ei,i, by

Lemma 2.7, where ei,iej,j = 0 for i < j, and ei,i is an idempotent. Since ϕnρ = 0,
Lemma 2.6 tells us ϕρ = 0, and ei,iρ = 0 for all i < α.

All we need is that u = ϕ + ρ is a unit. From the argument in Corollary 3.3, it
suffices to show that u is a left non-zero-divisor. Suppose us = 0 for some s ∈ R.
If ϕs = 0 then

0 = us = ϕs + (1− ψϕn)s = s.
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So we may assume ϕs 6= 0, and hence there is a minimal index β so that eβ,βs 6= 0.
Then

0 = eβ,βus = eβ,β(ϕ + ρ)s = eβ,βs

a contradiction. Thus s = 0, whence u is a left non-zero-divisor as claimed. ¤
Corollary 6.2. Let R be a ring with a nice topology. If R is Dedekind-finite and
semi-regular, then R is a full exchange ring.

Proof. In this case RR has (C2) since R is regular. Thus Theorem 6.1 applies. ¤
Corollary 6.3. Let R be a ring with a nice topology. If R is a unit regular ring,
then R is a full exchange ring.

Proof. Unit regular rings are always Dedekind-finite and regular. ¤
Theorem 6.4. Let R be a ring with a nice topology. If R is strongly clean, idem-
potents lift modulo J(R), and either RR or RR has (C2), then R is a full exchange
ring.

Proof. Just as in Theorem 6.1, it suffices to prove (∗′1). Write ϕ = u + e where
u ∈ U(R), e2 = e ∈ R, and ue = eu. We just take ρ = e. By the same argument
in the second paragraph of the proof of Corollary 3.6, we obtain ϕe = 0. (We can’t
say e = 0 since ϕ might not be a left non-zero-divisor in this case.) Then

ϕ + ρ = ϕ((1− e) + e) + e = ϕ(1− e) + ϕe + e

= (u + e)(1− e) + 0 + e = u(1− e) + e

which is a unit with inverse u−1(1 − e) + e, since u and e commute. This yields
(∗′1). ¤

7. Exchange Modules

What do the previous results say concerning modules? We have the following
unsettling asymmetry, motivated by [5, Proposition 8.11].

Lemma 7.1. Let Mk be a module and E = End(Mk) as usual. If EE is cohopfian,
respectively has (C2), then the same is true for M . The converses do not hold.

Proof. First, suppose that EE is cohopfian. Let x ∈ E be an injective endomor-
phism on M . If xr = 0 for some r ∈ E then xr(m) = 0 for all m ∈ M . But x being
injective implies r(m) = 0 for all m ∈ M . Therefore r = 0. Since r was arbitrary, x
is a left non-zero-divisor. The cohopfian condition on EE then implies x is a unit.
This shows that M is cohopfian.

Now suppose instead that EE has (C2). Consider the situation where N ′ ⊆ M
and N ′ ∼= N ⊆⊕ M . Let e ∈ E be an idempotent with e(M) = N , and let
ϕ : N → N ′ be an isomorphism. Without loss of generality, we may assume ϕ ∈ E
by setting ϕ equal to 0 on (1− e)(M).

Consider the map, eE → ϕeE, given by left multiplication by ϕ. Clearly this
is surjective. To show injectivity, suppose that ϕer = 0 for some r ∈ E. Then
ϕer(m) = 0 for all m ∈ M . In particular, ϕ(er(M)) = 0. But er(M) ⊆ e(M) and
ϕ is injective on e(M) = N , therefore er(M) = 0. But then er = 0. This shows
injectivity.

Thus ϕeE is isomorphic to eE, a direct summand of EE . Therefore ϕeE is
generated by an idempotent, say f . Clearly fϕe = ϕe, and f = ϕey for some y ∈ E.
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So f(M) = ϕey(M) ⊆ ϕe(M) = N ′, and f(M) ⊇ f(ϕe(M)) = ϕe(M) = N ′.
Hence N ′ = f(M) is a direct summand.

A single example will show that both converses do not hold. Let k = Z and let M
be the Prüfer p-group, for any prime p. Then E is isomorphic to the ring of p-adic
integers. Mk is cohopfian while EE is not, by [5, Proposition 8.11]. Notice that the
only idempotents in E are 0 and 1. Thus, the only direct summands in either Mk or
EE are the trivial ones. One easily sees that multiplication by p yields pE ∼= EE ,
but pE is not a summand. Therefore EE does not have the (C2) property. On
the other hand, any submodule isomorphic to M must contain elements killed by
multiplication by p, and hence must equal M . Thus, the only submodule of M
isomorphic to M is M itself, and trivially the only submodule of M isomorphic to
(0) is (0). Hence M has the (C2) property. ¤

Due to this lemma, it would appear that one could not work with the weaker
notion of a cohopfian module and hope to prove a result analogous to Corollary 3.2.
However, in an endomorphism ring a limit of units is very special.

Theorem 7.2. Let M be a cohopfian module with finite exchange. Then M has
countable exchange.

Proof. In the endomorphism ring, E, a convergent limit of units must be an injective
endomorphism (since nothing in the limit process has a kernel). But then the
cohopfian condition forces this endomorphism to be an isomorphism, or in other
words a unit in E. Thus convergent limits of units are units. So M has countable
exchange from Theorem 3.1, since (∗) holds (ϕ is a limit of units, and hence is a
unit). ¤

While the cohopfian condition was sufficient to show that ϕ is a unit, it isn’t
necessary. In the general case, we have an embedding ϕ : M → M . But, since
ϕ = limn→∞ v−1

n , this embedding is locally split by the units vn. In particular, in
Theorem 7.2 we could replace the cohopfian condition with the assumption that all
locally split monomorphisms (split by units) from M to M are globally split by a
unit.

We now ask if one can also tweak Theorems 6.1 and 6.4 so we are working with
the weaker hypothesis that M has the (C2) property. The answer is yes.

Theorem 7.3. Let M be a finite exchange module with the (C2) property, and also
be such that (∗1) holds for E in the finite topology. Then M has full exchange.

Proof. Following Theorem 4.1, with R = E, the only thing we need to show is that
(∗2) holds.

Consider the map f ′α(M) → y′αf ′α(M), given by left-multiplication by y′α. It is
clearly surjective. For any m ∈ M we have

f ′α(m) = lim
i→α

fif
′
α(m) = lim

i→α
riyif

′
α(m) = lim

i→α
riy

′
αf ′α(m),

and so the map above must also be injective. The (C2) hypothesis now implies
y′αf ′α(M) = gα(M) for some idempotent gα.

Define r′α by the rule r′α|(1−gα)(M) = 0 and r′α|gα(M) = limi→α ri|y′αf ′α(M), and
extend linearly to M . While it is true that limi→α ri does not necessarily con-
verge in general, it does converge on y′αf ′α(M) = gα(M) since we saw above that
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r′αy′αf ′α(m) = limi→α riy
′
αf ′α(m) = f ′α(m).7 Since m is arbitrary, r′αy′αf ′α = f ′α.

This gives (∗2). ¤

Theorems 6.1 and 6.4, and Corollaries 3.3 through 6.3 immediately translate
over to the endomorphism ring case. In particular, we have:

Corollary 7.4. If M has a Dedekind-finite, semi-π-regular endomorphism ring
then M has countable exchange. Similarly, if M has finite exchange and E/J(E)
is strongly clean, then M has countable exchange. In either of these cases, if we
add the hypothesis that M has (C2) then M has full exchange.

Corollary 7.5. If M has a Dedekind-finite, semi-regular endomorphism ring, then
M has full exchange.

Recall we have the isomorphism y′α : f ′αM → y′αf ′αM . This induces a monomor-
phism f ′αM → y′αf ′αM ⊆ M which is locally split by the maps f ′αri. But (∗2) is
equivalent to this monomorphism being globally split. So we could replace the (C2)
hypothesis in Theorem 7.3 and Corollary 7.4 with the weaker assumption that all
locally split monomorphisms from a summand of M into M are globally split.

8. Abelian Rings and Commutative Rings

The methods developed in this paper are abstracted from the methods we used
to prove that abelian modules8 with finite exchange have full exchange in [11].
The proof given there relies on a module-theoretic construction that doesn’t easily
translate over to the language of topological rings. To demonstrate this difficulty,
suppose R is a suitable ring with a nice topology. As in the proof of Theorem 4.1,
we have the equations

1 =
∑

i6β

ei,β + fβ =
∑

i6β

ei,β + rβ


 ∑

i∈(β,α)

xβ


 + rβy′α

for each β < α. Hence, by suitability, we can find orthogonal idempotents aβ ∈
R

(∑
i6β ei,β

)
, bβ ∈ R

(∑
i∈(β,α) xβ

)
, and cβ ∈ Ry′α, with aβ + bβ + cβ = 1.

If we assume that R satisfies (∗1) then we can define f ′α, just as before. Now
notice that aβf ′α = 0 since ei,βf ′α = vβei,if

′
α = 0. Also, limβ→α

∑
i∈(β,α) xβ = 0

and hence limβ→α bβ = 0. Thus

lim
β→α

cβf ′α = lim
β→α

aβf ′α + bβf ′α + cβf ′α = f ′α

Writing cβ = sβy′α, this says

(3) lim
β→α

sβy′αf ′α = f ′α.

Now suppose that R is abelian. We will show that we get (∗1) for free. Idem-
potents commute and so ϕ =

∑
i<α ei,i is a sum of orthogonal idempotents, and

hence ϕ is an idempotent. We can put p = 1− ϕ, and then (∗1) holds.

7One should also check that r′α is a well-defined homomorphism, which we leave to the reader.
8Recall that a ring is called abelian if all idempotents are central. A module is abelian if its

endomorphism ring is an abelian ring.
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What about (∗2)? After replacing sβ by sβy′αsβ if necessary, we have cβ =
sβy′α = y′αsβ . And hence equation (3) yields

f ′α = lim
β→α

f ′αsβf ′αy′αf ′α = lim
β→α

f ′αy′αf ′αsβf ′α.

If we assume that R = End(M) is an endomorphism ring in the finite topology,
then the equation f ′α = limβ→α f ′αsβf ′αy′αf ′α implies that fαy′αf ′α is an injective
endomorphism on the f ′α(M). Similarly, the equation f ′α = limβ→α f ′αy′αf ′αsβf ′α
implies f ′αy′αf ′α is surjective on f ′α(M). Therefore f ′αy′αf ′α ∈ U(f ′αRf ′α). We just let
r′α be the inverse (in the corner ring f ′αRf ′α) and then (∗2) holds. This yields:

Proposition 8.1 ([11, Theorem 2]). An abelian module with finite exchange has
full exchange.

More generally, let I be a directed set and let R be a ring with a linear, Hausdorff
topology. Suppose we are given elements si ∈ R for each i ∈ I. We can ask
what hypotheses need to be placed on R so that any element r ∈ R satisfying the
equations

1 = lim
i∈I

rsi = lim
i∈I

sir

must be a unit. We saw above that it sufficed to assume R is an endomorphism ring
in the finite topology. Unfortunately even if we assume R = End(M)/J(End(M)),
using the finite topology on End(M) and then the quotient topology on R, it doesn’t
appear that these equations imply r ∈ U(R). This is one obstruction to showing
that square-free modules with finite exchange have full exchange.

There is another avenue we can explore if we assume a little more than R being
abelian.

Lemma 8.2. Let R be a ring with a complete, linear, Hausdorff topology. If every
open neighborhood of zero contains an open (two-sided) ideal neighborhood of zero,
then convergent limits of units are units.

Proof. Let u = limi∈I ui be a limit in R, with I a directed set and ui ∈ U(R). Let
U be an arbitrary, open (left ideal) neighborhood of 0, and let V ⊆ U be an open
two-sided ideal neighborhood of 0. There is some k ∈ I so that for all j > k we
have uj − uk ∈ V . Left multiply by u−1

j and right multiply by u−1
k to obtain

u−1
j (uj − uk)u−1

k = u−1
k − u−1

j ∈ u−1
j V u−1

k = V ⊆ U.

Therefore, {u−1
i }i∈I is a Cauchy system. Since the topology is complete, v =

limi∈I u−1
i exists. Then one verifies

uv = lim
i∈I

ui lim
i∈I

u−1
i = lim

i∈I
uiu

−1
i = 1

and similarly vu = 1. Therefore, u ∈ U(R) as claimed. ¤

With all this talk of convergent limits, one might expect to use Theorem 3.1 to
show countable exchange. However, we can do better.

Proposition 8.3. Let R be a suitable, commutative ring with a complete, linear,
Hausdorff topology. Then R is a full exchange ring.

Proof. First notice that for any idempotent e ∈ R the corner ring eRe is a ring with
a complete, linear, Hausdorff topology. Second, it is well known that commutative
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suitable rings are strongly clean. From the argument above we see that (∗1) holds.
Therefore, it suffices to show that (∗2) holds.

Using the notation of Theorem 4.1, we have

y′αf ′α = lim
i→α

yif
′
α

where yif
′
α ∈ U(f ′αRf ′α) with inverse f ′αri.9 Thus y′αf ′α is a limit of units, and

hence is a unit by Lemma 8.2, in the corner ring U(f ′αRf ′α). But then we just set
r′α = (f ′αy′αf ′α)−1 (again in the corner ring) and we have (∗2) holding. ¤

If a family {xi}i∈I is left-multiple summable in R, then the same holds true of
the family {xi}i∈I in R/J(R). However, in general the completeness of a topology
does not pass to quotient rings, and so we can’t lift the previous proposition through
the radical.

9. Final Remarks

In [11] we defined what we called finitely complemented modules. These are
modules whose direct summands have only finitely many complement summands.
We showed that a finitely complemented module with a regular endomorphism ring
has full exchange. We claim (but do not give the proof here) that using the methods
derived above, one can remove the condition that E is regular, and replace it with
M having finite exchange and (C2).

There is another class of modules we can apply these techniques to; namely,
square-free modules. Suppose that M is a square-free module with finite exchange.
Mohamed and Müller have shown that E/J(E) is abelian [8, Lemmas 11 and 15],
and hence strongly clean. If M has (C2) then Corollary 7.4 shows full exchange for
M . For square-free modules the (C2) property is equivalent to cohopfianness. So
what we have shown is that a cohopfian, square-free module with finite exchange
has full exchange. (One could even improve this to: square-free modules with finite
exchange, where all locally split monomorphisms from summands of M into M are
globally split, are full exchange modules.)

As far as we know, the only major classes of modules where it is known that finite
exchange implies countable exchange but not known if it further implies full ex-
change are cohopfian modules, finitely complemented modules, and modules where
E/J(E) is strongly clean; all of which follows easily from the ideas used in the proof
of Theorem 3.1.

Unfortunately, the converse of Theorem 3.1 is not true. For example, let k be a
field and let Mk be a countably infinite-dimensional vector space over k, say with
basis {mi}i∈Z+ . Let R = E = End(Mk) with the finite topology, which is a suitable
ring. Define xi ∈ R, for i ∈ Z+, as follows:

xi(mj) =





−mi if j = i− 1
mi + mi+1 if j = i

0 otherwise.

9Here we are using the fact that riyi = fi ∼r f ′α, and that idempotents commute.
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Notice that
∑∞

i=1 xi = 1. Set yi =
∑

j>i xj . Then one calculates easily

yi(mj) =





0 if j < i

−mi+1 if j = i

mj if j > i.

Since x1 is already an idempotent we can take e1,1 = x1 and f1 = y1. We leave
the calculations to the reader, and claim that by induction fixi+1fi + fiyi+1fi =
fi is already a sum of orthogonal idempotents, and so we may take ei+1,i+1 =
fixi+1fixi+1 and fi+1,i+1 = fiyi+1fiyi+1. It turns out that

ei,i(mj) =





−mi −mi+1 if j = i− 1
mi + mi+1 if j = i

0 otherwise
and fi,i(mj) =





0 if j < i

−mi+1 if j = i

mj if j > i.

Setting ϕ =
∑∞

i=1 ei,i, we see that ϕ is not a unit since it isn’t surjective: m1 /∈
im(ϕ). However, M has full exchange (being semisimple) and so E is a full exchange
ring in the finite topology. Therefore, this shows that the converse of Theorem 3.1 is
not true. Modifying the example slightly, we see that the methods of this paper will
also not work for a direct sum of an infinite number of copies of a single non-zero
module.
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