Coupling of Dirichlet-to-Neumann boundary condition and finite difference methods in curvilinear coordinates for multiple scattering

Sebastian Acosta, Vianey Villamizar *

Department of Mathematics, Brigham Young University, Provo, UT 84602, United States

1. Introduction

Analytical solutions for wave scattering problems from multiple complexly shaped obstacles are not possible to obtain in general. For this reason, early work was mainly performed on circular cylindrical and spherical obstacles using modal expansions of the scattered field. The construction of analytical techniques for multiple scattering continues to be an active field of research. Numerous works on multiple scattering from circular, elliptical cylinders, and spheres have recently appeared [1–3]. A major drawback of these methods is that they cannot be applied to more general scatterer geometries. The excellent book by Martin [4] reviews a variety of these analytical techniques and contains a large number of references.

Multiple scattering from scatterers of complex geometries requires the application of numerical techniques. Recent numerical work has been based on either finite difference, integral equation, or finite element methods. For instance, Sherer and Visbal [5] and Sherer and Scott [6] discussed multiple acoustic scattering from two and three circular cylinder configurations in two dimensions. For the approximations, they employed high-order compact finite difference methods on complex grids generated by overset-meshing procedures. Their numerical solution accurately approximates the analytical solution. Although, their technique has potential applications to scatterers of arbitrary shape, they only presented results for obstacles in the form of circular cylinders. Another attempt was made by Villamizar and Acosta [7] where an acoustic scattering problem from three complexly shaped obstacles was numerically solved. The approximation obtained for the acoustic pressure field is illustrated in Fig. 1 for a two-dimensional scatterer configuration. For this purpose, the authors used
Although the computations of the multiple-DtN technique are performed in relatively small sub-domains, the linear system that results from the discretization of the continuous problem is not completely sparse. In fact, all the field values at the interface are also part of the unknowns. This may be a disadvantage when compared with the integral equation methods, such as Nyström or boundary elements, whose matrices are dense but their only unknowns are at the obstacle boundaries. However, when the properties of the medium change, the use of integral equation methods may result in comparable or larger linear systems than those obtained by employing the proposed method.

We are currently working on the implementation of the theoretical results found in this work to configurations of truly complex three-dimensional obstacles. One of the major challenges in doing this will be the extension of the grid generation technique to three-dimensional scatterer configurations. However, the fact that grids are independently generated in sub-domains containing a single obstacle will greatly simplify the process. In order to improve the rate of convergence and the computational efficiency, we plan to use higher order compact schemes [44] instead of our current second order method.

Acknowledgments

The authors thank the anonymous referees for their most constructive suggestions which certainly improved the quality of the manuscript. The first author’s work was supported by the Office of Research and Creative Activities (ORCA) of Brigham Young University.

References