We noted that the stable and unstable manifolds depend continuously on one another (since the splitting is continuous) and there is a minimum positive angle between the subspace E^s and E^u. Together with the smoothness of the stable and unstable manifolds this implies the following:

Proposition 0.1 If Λ is a hyperbolic set there exists an $\epsilon > 0$ such that for all $x, y \in \Lambda$ the set $W^s_\epsilon(x) \cap W^u_\epsilon(y)$ consists of at most one point, denoted $[x, y]$, and there exists a $\delta > 0$ such that whenever $d(x, y) < \delta$ the point $[x, y]$ exists. Furthermore, there exists $C_p > 1$ such that if $d(x, y) < \delta$ and $x, y \in \Lambda$, then $d^s(x, [x, y]) \leq C_p d(x, y)$ and $d^u([x, y], y) \leq C_p d(x, y)$.

The next definition gives a class of hyperbolic sets that is the best understood and most used.

Definition 0.2 A hyperbolic set Λ is locally maximal (or isolated) for $f \in \text{Diff}(M)$ if there exists a neighborhood U of Λ in M such that $\Lambda = \bigcap_{n \in \mathbb{Z}} f^n(U)$. Such a neighborhood is called an isolating neighborhood.

We will see that the next definition is equivalent to local maximality.

Definition 0.3 A hyperbolic set Λ has a local product structure if there exists $\delta > 0$ and $\epsilon > 0$ such that for any points $x, y \in \Lambda$ where $d(x, y) < \delta$ the set $W^s_\epsilon(x) \cap W^u_\epsilon(y)$ consists of one point contained in Λ.
Examples of hyperbolic sets that have a local product structure (and as we will see are then locally maximal) are the horseshoe, solenoid, and Anosov diffeomorphisms. An example of a hyperbolic set that does not have a local product structure is the following: Let \(\Lambda \) consist of a hyperbolic fixed point together with the orbit of a transverse homoclinic point. We showed in the last lecture that this set is hyperbolic and does not possess a local product structure.

Proposition 0.4 A hyperbolic set \(\Lambda \) is locally maximal if and only if it has a local product structure.

Proof. We may assume that \(\Lambda \) has an adapted metric on. Assume that \(U \) is an isolating neighborhood of \(\Lambda \). Then there exists an \(\epsilon > 0 \) such that \(W^s_\epsilon(x) \cap W^u_\epsilon(y) \) consists of one point. For \(\epsilon \) sufficiently small we may assume that \(\bigcup x \in \Lambda B_\epsilon(x) \subset U \). Then there exists a \(\delta > 0 \) such that \([x, y] = W^s_\epsilon(x) \cap W^u_\epsilon(y) \) consists of one point and that all iterates of this point stay within \(\epsilon \) of \(\Lambda \). Hence, \(z \in \bigcup_{n \in \mathbb{Z}} f^n(U) = \Lambda \) and \(\Lambda \) has a local product structure.

Now assume that \(\Lambda \) has a local product structure. Fix constants \(\delta > 0 \) and \(\epsilon > 0 \) from the local product structure. Fix \(\alpha \in (0, \delta/3) \) such that if \(x \in \Lambda \) and \(z \in W^u_\alpha(x) \), then \(f(z) \in W^u_{\delta/3}(f(x)) \).

Assume that \(x_0 \in \Lambda \) and \(z \in W^u_\alpha(x_0) \) such that for all \(n > 0 \) there exists a point \(y_n \in \Lambda \) and \(d(f^n(z), y_n) < \alpha/c_p \), where \(C_p \) is defined as in Proposition 0.1. Then \(d(f(x_0), y_1) \leq d(f(x_0), f(z)) + d(f(z), y_1) < \delta/3 + \alpha/C_p < \delta \). Let \(x_1 = W^s_\epsilon(y_1) \cap W^u_\epsilon(f(x_0)) \in \Lambda \) and \(f(z) \in W^u_\alpha(x_1) \).

Similarly, we have a point \(x_2 = [y_2, f(x_1)] \in \Lambda \) and \(f^2(z) \in W^u_\alpha(x_2) \). Inductively, we then have points \(x_n \in [y_n, f(x_{n-1})] \in \Lambda \) and \(f^n(z) \in W^u_\alpha(x_n) \) for all \(n > 0 \). Let \(z_n = f^{-n}(x_n) \). We then have \(z_n \to z \) as \(n \to \infty \). Since \(\Lambda \) is closed we know that \(z \in \Lambda \). Similarly, if \(z \in W^s(x_0) \) and \(f^{-n}(z) \) stays close to \(\Lambda \) for all \(n > 0 \), then \(z \in \Lambda \).

Now assume that \(O(z) \) stays close to \(\Lambda \). Then \(\Lambda \cup O(z) \) is a hyperbolic set (this can be proved by methods from the last lecture). So there exists \(x_n \in \Lambda \) for all \(n \in \mathbb{Z} \) such that \(d(f^n(z), x_n) < \alpha \). If \(y = [z, x_0] \), then \(O^+(y) \) stays close to \(\Lambda \). If \(y' = [x_0, z] \), then \(O^-(y') \) stays close to \(\Lambda \). By the previous arguments we know that \(y, y' \in \Lambda \) Hence, \(z = [y, y'] \) is contained in \(\Lambda \) and \(\Lambda \) is locally maximal. □