1 Horseshoe

At the turn of the 20th century Poincare investigated what happens when a stable and unstable set for a fixed point have a transverse intersection. This is called a transverse homoclinic point. The dynamics of such a system are very complicated. We will examine this in more detail later in the semester.

In the 1960’s Smale described a simple system with similar behavior called a horseshoe. Let \(D \) be a region in \(\mathbb{R}^2 \) consisting of 2 semi-circles and the unit square. Let \(R = [0, 1] \times [0, 1] = D_2 \cup D_3 \cup D_4 \) be the unit square. Suppose that \(f : D \to D \) stretches \(D_2 \) and \(D_4 \) uniformly in the vertical direction by some constant \(\mu > 2 \) and contract in the horizontal direction by \(\lambda < 1/2 \), \(f(D_1) \cup f(D_3) \subset D_1 \), and \(f(D_3) \subset D_5 \). So the shape of \(f(D) \) is a horseshoe.

Let \(R_0 = f(D_2) \cap R \) and \(R_1 = f(D_4) \cap R \). Note that \(f(R) \cap R = R_0 \cup R_1 \). Furthermore, the set \(f^2(R) \cap f(R) \cap R = f^2(R) \cap R \) consists of 4 vertical rectangles \(R_{ij} \), \(i, j \in \{0, 1\} \), of length \(\lambda_2 \) such that \(R_{ij} = R_i \cap f(R_j) \). For \(i_0, ..., i_n \in \{0, 1\} \) we let

\[
R_{i_0, ..., i_n} = R_{i_0} \cap f(R_{i_1}) \cap \cdots \cap f^n(R_{i_n}).
\]

This will be a vertical rectangle of length \(\lambda^n \) and \(f^n(R) \cap R \) consists of \(2^n \) such rectangles.

Similar to the construction of \(\Lambda_{\mu} \) for quadratic maps we see that if \(t \in \Sigma_2^+ \), then \(R_t = \bigcap_{i=0}^{\infty} f^i(R_{i_t}) \) consists of \(x \times [0, 1] \) for some \(x \in [0, 1] \). Let \(H^+ = \bigcup_{t \in \Sigma_2^+} R_t \). Then \(H^+ \) consists of a Cantor set, \(C^+ \), cross the interval \([0, 1]\).
Using the preimage of R we see that $f^{-1}(R_0) = f^{-1}(R) \cap D_2$ and $f^{-1}(R_2) = f^{-1}(R) \cap D_4$ are horizontal rectangles of width μ^{-1}. For any sequence $i_{-m}, \ldots, i_{-1} \in \{0, 1\}$ we have $R_{i_{-m}, \ldots, i_{-1}} = \bigcap_{k=0}^{m} f^{-k}(R_{i_k})$ is a horizontal rectangle of width μ^{-m} and $H^- = \bigcap_{i=1}^{\infty} f^{-i}(R)$ is the product of the interval $[0, 1]$ with a Cantor set, C^-. The set $H = H^+ \cap H^- = \bigcap_{i=-\infty}^{\infty} f^i(R)$ is $C^+ \times C^-$. The map $\phi : \Sigma_2 \rightarrow H$ defined by $\phi(t) = \bigcap_{k=-\infty}^{\infty} f^k(R_{i_k})$ is a conjugacy.

Then the set H has the same dynamic complexity as Σ_2. Specifically, we know that periodic points are dense, $\text{Per}_n(f|_H) = 2^n$, and there is a point with a dense orbit (so $f|_H$ is topologically transitive).

2 Solenoid

Definition 2.1 A set X is an attractor for a map f if there exists a neighborhood U of X such that $f(U) \subset U$ and $X = \bigcap_{n \geq 0} f^n(U)$. The set U is called an attracting set.

The solenoid is an attractor. Take $N = S^1 \times D_2$ to be the solid torus. Define $g : S^1 \rightarrow S^1$ by $g(t) = 2t \mod 1$ and

$$f(t, x, y) = (2t, \frac{x + \cos 2\pi t}{2}, \frac{y + \sin 2\pi t}{2}).$$

Let $N_k = \bigcap_{j=0}^{k} f^j(N)$.

Claim 2.2 For all $t \in S^1$, the set $N_k \cap D(t)$ is the union of 2^k disks of radius $(1/4)^k$.

Proof. True for $k = 0$ and $k = 1$. Suppose it is true for $k - 1$. The set

$$N_k \cap D(t) = f(N_{k-1} \cap D(t/2)) \cup f(N_{k-1} \cap D(t/2 + 1/2)).$$

By induction each of these are 2^{k-1} disks of radius $(1/4)^{k-1}$. Since f contracts by $1/4$ we have the desired result. □

Let $\Lambda = \bigcup_{j=0}^{\infty} f^j(N) = \bigcap_{j=0}^{\infty} N_j$.

Proposition 2.3 The set Λ has the following properties:

1. Λ is connected.
2. Λ is not locally connected.

3. Λ is not path connected.

4. Λ has topological dimension one.

Proof. For (1) we notice that the sets N_k are compact, connected, and nested. Hence, so is Λ.

For (2) we take $0 < t_2 - t_1 < 1$. Then $D[t_1, t_2] \cap N_k$ is the union of 2^k twisted tubes. For any neighborhood U of a point $p \in \Lambda$ there exist choices of t_1, t_2, an k such that U contains 2 tubes. Therefore, Λ is not locally connected.

For (3) fix $p = (t_0, x_0, y_0) \in \Lambda$. Then there exists $q_k \in \Lambda \cap D(t_0)$ for each k such that

1. For $k \geq 2$, the point q_k is in the same component of $N_{k-1} \cap D(t_0)$ as q_{k-1}, and

2. any path from p to q_k that is in N_k must go around S^1 at least 2^{k-1} times.

The sequence $\{q_k\}$ converges to a point $q \in \Lambda$, since Λ is closed. We claim there is no path from p to q. The point q is in the same component of $N_k \cap D(t_0)$ as q_k for any $k \in \mathbb{N}$. Hence, any path from p to q must intersect $N_k \cap D(t_0)$ at least 2^{k-1} and any path from p to q in Λ must intersect $D(t_0)$ infinitely often and traverse S^1 between each intersection, a contradiction.

For (4) we notice that the set $\Lambda \cap D(t_0)$ is totally disconnected so has topological dimension 0. The set $\Lambda \cap D([t_1, t_2])$ is a product of $\Lambda \cap D(t_1)$ with an interval. So the topological dimension of Λ is 1. \square

Proposition 2.4 The map f restricted to Λ has the following properties:

1. The periodic points are dense.

2. There is a point with a dense orbit.

Proof. For (1) we note that $g^k(t_0) = t_0$ if and only if $2^k t_0 = t_0 + j$ so $t_0 = j/2^{k-1}$. So the periodic points of g are dense in S^1. If $g^k(t_0) = t_0$, then $f^k(D(t_0)) \subset D(t_0)$. The set $D(t_0)$ is a disk so has a fixed point in $D(t_0)$. So there is a periodic point for f in $D(t_0)$.

3
Now take \(p \in \Lambda \) and let \(U \) be a neighborhood of \(p \). There exists a \(k \in \mathbb{N} \) and \(t_1, t_2 \in S^1 \) such that \(f^k(D([t_1, t_2])) \subset U \). By above \(f \) has a periodic point in \(D([t_1, t_2]) \) so in \(f^k(D([t_1, t_2])) \) and we are done.

We will see (2) at a later time. \(\square \)

2.1 Conjugacy of the Solenoid to an inverse limit

Let

\[
\Sigma^- = \{ s \in (S^1)^\mathbb{N} \mid g(s_{j+1}) = s_j \}.
\]

Define \(\sigma \) on \(\Sigma^- \) by \(\sigma(s) = t \) if

\[
t_j = \begin{cases}
 s_{j-1} & \text{if } j \geq 1 \\
 g(s_0) & \text{if } j = 0.
\end{cases}
\]

If \(s \in \Sigma^- \), then \(g(s_{j+1}) = s_j \). So \(s_{j+1} \in g^{-1}(s_j) \) is one of the two preimages of \(s_j \). The pair \((\Sigma^-, \sigma)\) is called the inverse limit of \(g \).

Define the map \(h : \Lambda \to (S^1)^\mathbb{N} \) by \(h(p) = s \) where \(f^i(p) \in D(s_j) \) with \(s_j \in S^1 \) for all \(j \geq 0 \).

Theorem 2.5 The map \(h \) is a conjugacy from \((\Lambda, f)\) to \((\Sigma^-, \sigma)\).

Proof. We first show that \(h(\Lambda) \subset \Sigma^- \). Let \(h(p) = s \). Then \(f^{-j}(p) \in D(s_j) \) and \(f^{j-1}(p) \in D(s_{j+1}) \). So \(f(D(s_{j+1})) \cap D(s_j) \neq \emptyset \) and \(f(D(s_{j+1})) \subset D(s_j) \). Thus, \(g(s_{j+1}) = s_j \) for all \(j \) and \(s \in \Sigma^- \).

We now show that \(h \circ f = \sigma \circ h \). For \(p \in \Lambda \), \(h(p) = s \), and \(h(f(p)) = t \), we have \(f^{-(j+1)}(f(p)) = f^{-j}(p) \) and so is in \(D(t_{j+1}) \) and \(D(s_j) \). Therefore, \(t_{j+1} = s_j \) for all \(j \geq 0 \). Similarly, \(f(p) \) is in \(D(t_0) \) and \(f(D(s_0)) \) so \(t_0 = g(s_0) \). Hence, \(\sigma(s) = t \).

We show \(h \) is one-to-one. If \(h(p) = h(g) = s \), then \(p, q \in \bigcap_{i=0}^k f^i(D(s_j)) \) this is nested with radii going to zero. So we have \(p = q \).

To show that \(h \) is onto we see that if \(s \in \Sigma^- \), then \(g(s_{j+1}) = s_j \). So \(f(D(s_{j+1})) \subset D(s_j) \),

\[
f^j(D(s_j)) \subset f^{j-1}(D(s_{j-1})) \subset \ldots \subset D(s_0),
\]

and \(\bigcap_{j=0}^k f^j(D(s_j)) \) is a nested sequence of disks with nonempty intersection. \(\square \)