3.2.1(a) (2 pts) In the proof we let \(\epsilon = \min \{ \epsilon_1, ..., \epsilon_N \} \). If the set of \(\epsilon_i \) was infinite, then \(\epsilon \) may be 0.

3.2.1(b) (2 pts) Let \(\mathcal{O}_i = (\frac{-1}{n}, \frac{1}{n}) \). Then \(\bigcap_{i \in \mathbb{N}} \mathcal{O}_i = \{0\} \).

3.2.2 (5 pts) (a) Limit points are \(-1\) and 1. (b) No. (c) No. (d) Yes. (e) \(\overline{B} = B \cup \{-1, 1\} \).

3.2.7 (3 pts) Let \(x \in \mathcal{O} \) where \(\mathcal{O} \) is open. Then there exists some \(\epsilon > 0 \) such that \(V_\epsilon(x) \subset \mathcal{O} \). If \(x_n \to x \) as \(n \to \infty \), then there exists some \(N \in \mathbb{N} \) such that \(|x_n - x| < \epsilon \) for all \(n \geq N \). Hence, there are at most a finite number of terms in the sequence not contained in \(\mathcal{O} \).

3.2.9(a) (3 pts) Let \(y \) be a limit point of \(A \cup B \). Then there exists some \(\{y_n\} \subset A \cup B \) such that \(y_n \to y \). \(A \) or \(B \) will contain an infinite number of elements of \(\{y_n\} \). So there is a subsequence contained in \(A \) or \(B \). Hence, \(y \) is a limit point of \(A \) or \(B \).

3.2.9(b) (3 pts) Let \(x \in \overline{A \cup B} \). Then \(x \in A \cup B \) or a limit point of \(A \cup B \). By the previous result we know that \(x \in A \), \(x \in B \), or \(x \) is a limit point of \(A \) or \(B \). Hence, \(x \in \overline{A \cup B} \).

Let \(x \in \overline{A \cup B} \). Then \(x \in A \), \(x \in B \), or \(x \) is a limit point of \(A \) or \(B \). Hence, \(x \in \overline{A \cup B} \).

3.2.9(c) (2 pts) No. Let \(A_n = \{\frac{1}{n}\} \). Then \(\bigcup_{n \in \mathbb{N}} A_n = \{0\} \cup \bigcup_{n \in \mathbb{N}} A_n \), but \(\bigcup_{n \in \mathbb{N}} \overline{A_n} = \bigcup_{n \in \mathbb{N}} A_n \).