3.4.5 (4 pts) Let \(A, B \subset \mathbb{R} \) such that there exist \(U \) and \(V \) open subsets of \(\mathbb{R} \) where \(A \subset U \), \(B \subset V \), and \(U \cap V = \emptyset \). We know that \(\overline{A} \subset U \), \(\overline{B} \subset V \), \(U \cap V = \emptyset \), and \(U \cap V = \emptyset \). So \(\overline{A} \cap B = \emptyset = A \cap \overline{B} \). Hence, \(A \) and \(B \) are separated.

3.4.7(a) (2 pts) Let \(A = \mathbb{Q} \). Then \(\mathbb{Q} \) is disconnected, but \(\overline{A} = \mathbb{R} \) is connected.

3.4.7(b) (5 pts) Let \(A \) be connected. So for all nonempty sets \(C \) and \(D \) in \(\mathbb{R} \) such that \(A \subset C \cup D \) we know that \(\overline{C} \cap D \) or \(C \cap \overline{D} \) is nonempty. For \(\overline{A} \) if \(E \) and \(F \) are subset of \(\mathbb{R} \) such that \(A \subset E \cup F \) we know that \(A \subset E \cup F \). So either \(\overline{E} \cap F \) or \(E \cap \overline{F} \) is nonempty. Hence, \(\overline{A} \) is connected.

If \(A \) is perfect, then \(A \) is closed so \(A = \overline{A} \) and \(A \) is connected. So \(\overline{A} \) is perfect. \(\square \)

3.4.8(a) (3 pts) Let \(x, y \in \mathbb{Q} \). Assume that \(x < y \). Fix \(r \in \mathbb{I} \) such that \(x < r < y \). Let \(A = \{ q \in \mathbb{Q} : q < r \} \) and \(B = \{ q \in \mathbb{Q} : q > r \} \). Then \(x \in A \), \(y \in B \), and \(\overline{A} \cap B = \emptyset = A \cap \overline{B} \).

3.4.9(a) (2 pts) Given \(x, y \in C \) with \(x < y \) fix \(\epsilon = y - x \). Then there exists some \(N \in \mathbb{N} \) such that \(1/3^N < \epsilon \). then \(x \) and \(y \) are in separate intervals of length \(1/3^n \) for all \(n \geq N \). Hence, \(x \) and \(y \) are in different components of \(C_n \) for all \(n \geq N \).

3.4.9(b) (2 pts) Now let \(z \in [x, y] \) such that \(z \notin C_N \). Then \(z \notin C \). If \(a, b \in C \), then for \(\epsilon = b - a \) we see that there exists some \(z \in (a, b) \) such that \(z \notin C \). So \((a, b) \) is not a subset of \(C \).

3.4.9(c) (2 pts) Let \(x, y \in C \) and \(z \in (x, y) \) such that \(z \notin C \). Define \(A = C \cap (-\infty, z] \) and \(B = C \cap [z, \infty) \). Then \(A \) and \(B \) are nonempty, \(A \cup B = C \), and \(A \) and \(B \) are separated since both are closed.