4.6.3 (5 pts) Let \(\lim_{x \to c} f(x) = L \). Fix \(\epsilon > 0 \). Then there exists some \(\delta > 0 \) such that if \(0 < |x - c| < \delta \), then \(|f(x) - L| < \epsilon \). So if \(0 < x - c < \delta \) we have \(|f(x) - L| < \epsilon \) and if \(0 < c - x < \delta \) we have \(|f(x) - L| < \epsilon \). Therefore, \(\lim_{x \to c^-} f(x) = L \) and \(\lim_{x \to c^+} f(x) = L \).

If \(\lim_{x \to c^-} f(x) = L \) and \(\lim_{x \to c^+} f(x) = L \), then there exist \(\delta_1, \delta_2 > 0 \) such that \(0 < x - c < \delta_1 \) implies that \(|f(x) - L| < \epsilon \) and \(0 < c - x < \delta_2 \) implies \(|f(x) - L| < \epsilon \).

Let \(\delta = \min\{\delta_1, \delta_2\} \). So if \(0 < |x - c| < \delta \), then \(0 < x - c < \delta \leq \delta_1 \) or \(0 < c - x < \delta \leq \delta_2 \). Hence, \(|f(x) - L| < \epsilon \) and \(\lim_{x \to c} f(x) = L \). \(\Box \)

4.6.6 (5 pts) (i) Let \(F_1 = \mathbb{R} \). Since \(F_1 \) is closed we know that \(\mathbb{R} \) is the countable union of closed sets. (ii) Let \(F_i = \mathbb{R} - (\frac{-1}{i}, \frac{1}{i}) \). So each \(F_i \) is closed and \(\bigcup F_i = \mathbb{R} - \{0\} \). (iii) Enumerate \(\mathbb{Q} \). Then let \(F_i = \{q_i\} \). Each \(F_i \) is closed and \(\bigcup F_i = \mathbb{Q} \). (iv) Same as for \(\mathbb{Q} \) since \(\mathbb{Z} \) is countable. (v) Let \(F_i = [\frac{1}{i}, 1] \). Then \(\bigcup F_i = (0, 1] \).