Exercise (1). Let X be a sequentially compact metric space. Prove that the subspace K of X is sequentially compact if and only if K is a closed subset of X.

Solution (1). (\Rightarrow) Suppose that K is sequentially compact. Take a sequence $\{u_j\} \subseteq K$ converging to a point in X. By sequential compactness, \exists a subsequence u_{j_i} converging to a point in K. Since the sequence and subsequence must converge to the same thing, u_j converges to the same point in K. (\Leftarrow)

Suppose that K is closed in (X,d). Take a sequence $\{u_i\} \subseteq K$. Since X is sequentially compact, there exists a subsequence $\{u_{i_j}\} \subseteq K$ converging to a point in X. Now, $\{u_{i_j}\}$ is contained in K and is convergent, and since K is closed, $\{u_{i_j}\}$ converges to a point in K.

Exercise (3). Show that if X is a metric space and U and V are open subsets of X that separate X, then both U and V are closed in X.

Solution (3). Take a sequence $\{u_k\} \subseteq U$ converging to a point u in X. Suppose by way of contradiction that u is in V. Since V is open, \exists an open ball $B_r(u)$ with radius $r > 0$ about u containing points only in V. Now, since $\{u_k\} \to u$, we can find a $K \in \mathbb{N}$ such that for $k \geq K$, $d(u_k, u) < r$. This means that there are points $u_k \in B_r(u)$ and $\in U$. Then $u_k \in V \cap U$, a contradiction of U and V separating X. Thus, u must be in U, making U closed. By the symmetry of the problem, switching U and V and doing the same argument gives us V is closed.

Exercise (5). Let X be a sequentially compact metric space. Prove that X is disconnected if and only if there are nonempty subsets A and B of X and a positive number ϵ, with $A \cap B = \emptyset, A \cup B = X$, and $d(p,q) > \epsilon$ for all $p \in A, q \in B$. Is sequential compactness necessary?

Solution (5). (\Rightarrow) Suppose that X is disconnected. Then there exist open sets A and B such that $A \neq \emptyset, B \neq \emptyset, A \cap B = \emptyset, A \cup B = X$. Suppose by way of contradiction that for all $\epsilon > 0$, there exists a $p \in A, q \in B$ such that $d(p,q) \leq \epsilon$. We construct two sequences by letting $\epsilon_1 = 1$, and taking...
p_1, q_1 such that $d(p_1, q_1) < \epsilon$, which we are guaranteed to find by assumption. In general, let p_k, q_k be the points such that $d(p_k, q_k) < \epsilon_k$, where $\epsilon_k = \frac{1}{k}$. Since X is sequentially compact, we can take subsequences of each of these sequences p_{k_l}, q_{k_l} so that p_{k_l} converges to some point $r \in X$. Take another subsequence of these subsequences $p_{k_{l_n}}, q_{k_{l_n}}$ so that $q_{k_{l_n}}$ converges. We show these subsequences converge to the same thing. Let $\epsilon > 0$. We can find some $L \in \mathbb{N}$ such that for all $n \geq L, d(p_{k_{l_n}}, r) < \frac{\epsilon}{2}$, and we can find some $M \in \mathbb{N}, M > \frac{2}{\epsilon}$ such that for $n \geq M, d(p_{k_{l_n}}, q_{k_{l_n}}) < \frac{1}{M} < \frac{1}{\frac{2}{\epsilon}} = \frac{\epsilon}{2}$. Let $N = \max(L, M)$, and so for $n \geq N$,

$$d(q_{k_{l_n}}, r) \leq d(p_{k_{l_n}}, r) + d(p_{k_{l_n}}, q_{k_{l_n}}) < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon,$$

so $q_{k_{l_n}} \to r$. Now, by Exercise 3, A and B are closed, and $\{p_{k_{l_n}}\} \subseteq A$ and $\{q_{k_{l_n}}\} \subseteq B$, so $r \in A \cap B$, a contradiction since $A \cap B = \emptyset$.

(\Rightarrow) Suppose there are nonempty subsets A and B of X and a positive number ϵ, with $A \cap B = \emptyset, A \cup B = X$, and $d(p, q) > \epsilon$ for all $p \in A, q \in B$. We only need to show that A and B are open to get that X is disconnected. Choose $r = \frac{\epsilon}{2}$. Let $p \in A$. Then $B_r(p)$ does not contain points in B, and since $X \setminus B = A, B_r(p) \subseteq A$, so A is open. Switching B for A using this argument gives that B is open as well. Thus, X is disconnected.

Our argument in the “\Rightarrow” argument was dependent on X being sequentially compact, and we demonstrate why without it the theorem is false in general with a simple example: Let $X = \mathbb{R} \setminus \{0\}$, which is not sequentially compact. We separate X with $\mathbb{R}^+ = (0, \infty), \mathbb{R}^- = (-\infty, 0)$. Then $\mathbb{R}^+ \cap \mathbb{R}^- = \emptyset, \mathbb{R}^+ \cup \mathbb{R}^- = X$, and they are both open intervals, so they separate X, so X is disconnected. However, we can let $\epsilon > 0$ and pick points $-\frac{\epsilon}{2} \in \mathbb{R}^-, \frac{\epsilon}{2} \in \mathbb{R}^+$, and $d\left(-\frac{\epsilon}{2}, \frac{\epsilon}{2}\right) = \epsilon$. Conversely, the “$\Leftarrow$” argument did not require sequential compactness, and therefore remains valid without it.