Homework Assignment 12

March 31, 2014

As a reminder if we let \(r(u, v) \) be a parameterized surface and
\[
\alpha(t) = r(u(t), v(t))
\]
where \(t \in (-\epsilon, \epsilon) \) a smooth parameterized curve with \(p = \alpha(0) = r(u_0, v_0) \) and \(\alpha'(0) = r_u u' + r_v v' \), then first fundamental form is
\[
I_p(\alpha'(0)) = E(u')^2 + 2Fu'v' + G(v')^2
\]
where \(E(u_0, v_0) = \langle r_u, r_u \rangle_p, \) \(F(u_0, v_0) = \langle r_u, r_v \rangle_p, \) and \(G(u_0, v_0) = \langle r_v, r_v \rangle_p. \)

For the derivative of the Gauss map we let \(dN(\alpha'(0)) = N(u(t), v(t)) = N_u u' + N_v v' \) where \(N_u, N_v \in T_pS \) defined by \(N_u = dN_p r_u \) and \(N_v = dN_p r_v. \)

The second fundamental form for a surface is related to the shape operator and given by
\[
II_p(\alpha'(0)) = -\langle dN(\alpha'(0)), \alpha'(0) \rangle
\]
\[
= -\langle N_u u' + N_v v', r_u u' + r_v v' \rangle = e(u')^2 + 2fu'v' + g(v')^2
\]
where \(e = -\langle N_u, r_u \rangle = \langle N, r_{uu} \rangle, \)
\[
f = -\langle N_v, r_u \rangle = \langle N, r_{uv} \rangle = \langle N, r_{vu} \rangle = -\langle N_u, r_v \rangle, \)
and \(g = -\langle N_v, r_v \rangle = \langle N, r_{vv} \rangle. \)

From the Weingarten equation we can derive that the Gaussian curvature (which is also the sectional curvature) is
\[
K = \frac{eg - f^2}{EG - F^2},
\]
and the mean curvature is
\[
H = \frac{1}{2} \frac{eG - 2fF + gE}{EG - F^2}.
\]
Furthermore, if
\[dN_p = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}, \]
then
\[a_{11} = \frac{fF - eG}{EG - F^2}, \]
\[a_{12} = \frac{gF - fG}{EG - F^2}, \]
\[a_{21} = \frac{eF - fE}{EG - F^2}, \]
\[a_{22} = \frac{fF - gE}{EG - F^2}. \]

1. Show that at the origin \((0, 0, 0)\) of the hyperboloid \(z = axy\) we have \(K = -a^2\) and \(H = 0\).

2. Consider Enneper’s surface
\[r(u, v) = (u - \frac{u^3}{3} + uv^2, v - \frac{v^3}{3} + vu^2, v^2 + u^2 - v^2) \]
and show that
(a) the coefficients for the first fundamental form are \(E = G = (1 + u^2 + v^2)^2\) and \(F = 0\),
(b) the coefficients for the second fundamental form are \(e = 2, f = 0,\) and \(g = -2,\) and
(c) the principle curvatures are
\[k_1 = \frac{2}{(1 + u^2 + v^2)^2} \text{ and } k_2 = -\frac{2}{(1 + u^2 + v^2)^2}. \]

The following theorem is very important in the classification of surfaces.

Theorem 0.1 (Bonnet) Let \(E, F, G, e, f, g\) be differentiable functions defined in an open set \(V \subset \mathbb{R}^2\) with \(E > 0\) and \(G > 0\). Assume that the given functions satisfy the Gauss equation,
\[(\Gamma^2_{12})_u + (\Gamma^2_{11})_v + \Gamma^1_{12}\Gamma^2_{11} - \Gamma^2_{11}\Gamma^2_{22} - \Gamma^1_{11}\Gamma^2_{12} \]
2
and the Mainardi-Codazzi equations,
\[e_v - f_u = e\Gamma_{12}^1 + f(\Gamma_{12}^2 - \Gamma_{11}^1) - g\Gamma_{11}^2 \]
and
\[f_v - g_u = e\Gamma_{22}^1 + f(\Gamma_{22}^2 - \Gamma_{12}^1) - g\Gamma_{12}^2, \]
and that \(EG - F^2 > 0 \). Then, for all \(q \in V \) there exists a neighborhood \(U \subset V \) of \(q \) and a diffeomorphism \(r : U \to r(U) \subset \mathbb{R}^3 \) such that the regular surface \(r(U) \subset \mathbb{R}^3 \) has \(E,F,G \) and \(e,f,g \) as the coefficients of the first and second fundamental forms, respectively. Furthermore, if \(U \) is connected and if \(\bar{r} : U \to \bar{r}(U) \subset \mathbb{R}^3 \) is another diffeomorphism satisfying the same conditions, then there exist a translation \(T \) and a proper linear orthogonal transformation \(O \) in \(\mathbb{R}^3 \) such that \(\bar{r} = T \circ O \circ r \).

3. Show that no neighborhood of a point in a sphere may be isometrically mapped into a plane.

4. Show that there exists no surface \(r(u,v) \) such that \(E = G = 1 \), \(F = 0 \) and \(e = 1 \), \(g = -1 \), and \(f = 0 \).

5. Does there exist a surface \(r(u,v) \) with \(E = 1 \), \(F = 0 \), \(G = \cos^2 u \) and \(e = \cos^2 u \), \(f = 0 \), and \(g = 1 \)?

6. Justify why the sphere, cylinder, and saddle \((z = x^2 - y^2) \) are not pairwise locally isometric.