1. Let $M \subset \mathbb{R}^3$ be a compact, orientable, embedded 2-manifold with the induced metric.

 (a) Show that M cannot have $K \leq 0$ everywhere (\textbf{Hint:} look at a point where the distance from the origin takes a maximum.)

 (b) Show that M cannot have $K \geq 0$ everywhere unless $\chi(M) > 0$.

2. If M is an oriented surface with Riemannian metric, g, and the Gaussian curvature is nonpositive. Prove there are no geodesic polygons with 1 or 2 vertices. Give examples of surfaces with geodesic polygons having 1 or 2 vertices if the Gaussian curvature is positive.

3. A \textit{geodesic triangle} on a Riemannian 2-manifold (M, g) is a three-sided geodesic polygon. Prove that if M has constant Gaussian curvature K, show that the sum of the interior angles of a geodesic triangle γ is equal to $\pi + KA$, where A is the area of the region bounded by γ.