1. Let \(f : E \to \mathbb{R} \) be uniformly continuous. Fill in the details to show that the extension function \(F \) defined on a the closure of \(E \) is well-defined and that it is continuous on all the closure.

2. Let \(X \) be any set and define \(\mathcal{M} \) by \(A \in \mathcal{M} \) if and only if \(A \) is countable or \(A^c \) is countable. Prove that \(\mathcal{M} \) is a \(\sigma \)-algebra.

3. Let \(\mathcal{M}_i \) be a \(\sigma \)-algebra for each \(i \in I \). Prove \(\mathcal{M} = \bigcap_{i \in I} \mathcal{M}_i \) is a \(\sigma \)-algebra.

4. Prove that if the union of two \(\sigma \)-algebras in \(X \) is an algebra, then it is a \(\sigma \)-algebra.