1. Prove that if N is a null set in \mathbb{R}^n, then there exists a Borel null set N' such that $N \subset N'$. In fact, prove that N' may be chosen as a G_δ set—a countable intersection of open sets.

2. Prove that a set $A \subset \mathbb{R}^n$ is measurable if and only if there exists a set B that is an F_σ set (a countable union of closed sets) and a set C that is a G_δ set such that $B \subset A \subset C$ and $C - B$ is a null set.