Borel Sets

Defn: The Borel sets in \mathbb{R}^n is the σ-algebra generated by open sets in \mathbb{R}^n using the Euclidean topology.

Note: If we let $\mathcal{B} =$ Borel sets. Then $\mathcal{B} \subseteq \mathcal{L}$ since \mathcal{L} is a σ-algebra containing the open sets.

Defn: A set $A \subseteq \mathbb{R}^n$ is a null set if $A \in \mathcal{L}$ and $\lambda(A) = 0$.

Thm: Let $A \in \mathcal{L}$. Then A be be decomposed in the following manner

- $A = E \cup N$
- E is a Borel set
- N is a null set
- $E \cap N = \emptyset$
Pf: For each $k \in \mathbb{N}$ there exists a closed set $F_k \subseteq A$ s.t. $\lambda(A \cap F_k) < \frac{1}{k}$. Let $E = \bigcup_{k=1}^{\infty} F_k$. Then $E \in \mathcal{B}$ and for each $k \in \mathbb{N}$ we know $\lambda(A \cap E) < \frac{1}{k-1}$. So $\lambda(A \cap E) = 0$. Define $N = A \cap E$. □

Thm: Let E be a Borel set and $f: \mathbb{R}^m \rightarrow \mathbb{R}^n$ be continuous. If $A \subseteq \mathbb{R}^m$ is Borel, then $f^{-1}(A)$ is Borel.

Pf: Since Borel sets are not constructive in general we have to use a direct proof using the defn. Let $M = \{ A \subseteq \mathbb{R}^m : f^{-1}(A) \in \mathcal{B}_n \}$, Borel sets in \mathbb{R}^n. We want to show $B_m = \{ \text{Borel sets in } \mathbb{R}^m \} \subseteq M$. To do this we show M is a Borel set containing all open sets so contains B_m.
(a) \(f^{-1}(\emptyset) = \emptyset \in \beta_n \). So \(\emptyset \in M \)

(b) Let \(A_k \in M \) for \(k \in \mathbb{N} \). Then \(f^{-1}(A_k) \in \beta_n \) \(\forall k \)

and \(f^{-1}(\bigcup_{k=1}^{\infty} A_k) = \bigcup_{k=1}^{\infty} f^{-1}(A_k) \in \beta_n \) so \(\bigcup_{k=1}^{\infty} A_k \in M \).

(c) Let \(A \in M \). So \(f^{-1}(A) \in \beta_n \). Then

\[f^{-1}(A^c) = E \cap f^{-1}(A) \in \beta_n \] and \(A^c \in \beta_n \).

So \(M \) is a \(\sigma \)-algebra.

Since \(f \) is continuous we know if \(A \subset \mathbb{R}^m \) is open, that \(f^{-1}(A) \) is open. So \(E \cap H \in \beta_n \) where \(H \) is open.

So \(E \cap H \in \beta_n \) and \(A \in M \). \(\Box \)

Cor: Let \(E \subset \mathbb{R}^n \), \(F \subset \mathbb{R}^m \) be Borel and \(E \xrightarrow{f} F \) be a homeomorphism. If \(B \subset E \), then \(B \in \beta_n \iff f(B) \in \beta_m \).

Pf: Immediate from previous theorem.
A Meas. Set That is Not Borel

Theorem: $\beta \neq 2$.

Pf: We will show this for $n=1$. The proof can be extended to \mathbb{R}^n.

Let C be middle-thirds Cantor set and f be the Lebesgue function. Define $g(x) = x + f(x)$ for $0 \leq x \leq 1$. Then

- $g(0) = 0$
- $g(1) = 2$
- g is strictly increasing

So $g: [0,1] \to [0,2]$ is a homeomorphism.

For an interval I_r in $[0,1]\setminus C$ (where $r = \frac{m}{2^n}$) we have $g(x) = x + r$. So g takes an interval
Jo into another interval of the same length.

\[\lambda(g(C)) = \lambda\left(\bigcup_{r} g(J_r)\right) \]

\[= 2 - \sum_{r} \lambda(g(J_r)) \]

\[= 2 - \sum_{r} \lambda(J_r) = 2 - 1 = 1. \]

Now \(d(c) = 0 \). Since \(g(c) \) has pos. meas. \(\exists \) \(B \subset g(c) \) s.t. \(B \notin Z \). Let \(A = g^{-1}(B) \). So \(A \subset C \) and \(\lambda(A) \leq \lambda(C) = 0 \). So \(A \) is a null set and \(A \Subset Z \). However \(A \notin \beta \). Indeed, if \(A \Subset \beta \) then previous corollary says \(g(A) = B \Subset \beta \).