Consider a function f such that

$$ f : \mathcal{D} \subset \mathbb{R}^n \to \mathbb{R} \\
(x_1, \ldots, x_n) \to f(x_1, \ldots, x_n) $$ \hspace{1cm} (1)

0.1 Definition 1: Real-valued functions of n variables

A function of n variables is a rule that assigns a unique real number $f(x_1, \ldots, x_n)$ to each point (x_1, \ldots, x_n) in \mathcal{D}.

0.2 Definition 2: Domain and Range of functions of n variables

$f(x_1, \ldots, x_n)$ is called the image of (x_1, \ldots, x_n) under f.

The set $\mathcal{D} \subset \mathbb{R}^n$ is called the domain of f.

The set of all real values $f(x_1, \ldots, x_n)$ is called the Range of f. It means

$$ \text{range of } f = \{f(x_1, \ldots, x_n) : (x_1, \ldots, x_n) \in \mathcal{D}\} $$

Discuss examples of functions of two variables.

The graph of a real-valued function f of two is the variables is the set of points $(x, y, z) \in \mathbb{R}^3$ such that $z = f(x, y)$ and $(x, y) \in \mathcal{D}$.

0.3 Definition 3: Level Curves for functions of two variables

Assume the graph of a function $z = f(x, y)$ describes a surface S in \mathbb{R}^3. For any real value c in the range of f, the intersection of of S with the plane $z = c$ is the curve

$$ f(x, y) = c $$

The projection of this curve onto the xy-plane is called a level curve of f. It is also called a contour curve.
Exercise: obtain level curves for
\[z = f(x,y) = \ln (1 + x^2 + y^2) \]

Range of \(f = ? \), Domain = ?

Since \(1 + x^2 + y^2 > 0 \) for all \((x,y) \in \mathbb{R}^2\)

and \(\ln (z) \) is defined for all \(z > 0 \)

Domain \(f = \mathbb{R}^2 \)

Range of \(f \) The function \(\ln(x) \) has the graph

\[
\begin{array}{c}
\text{graph} \\
\end{array}
\]

Clearly, range of \(\ln(x) \) is \(\mathbb{R} = (-\infty, \infty) \).

Notice that \(1 + x^2 + y^2 > 1 \), \((x,y) \in \mathbb{R}^2\)

and \(\ln(x) \) for \(x > 1 \) is such that \(\ln x \in [0, +\infty) \)

So range of \(f(x,y) = \ln (1 + x^2 + y^2) \) is \([0, +\infty)\).
Level Curves:

\[f(x,y) = c, \quad \text{for } C \in \text{range of } f. \]

Then for \(C > 0 \)

\[\ln (x^2 + y^2 + 1) = c \]

What curves are these?

Hard to know!

However,

\[e^c = e^c \]

\[\ln (x^2 + y^2 + 1) \]

\[x^2 + y^2 + 1 = e^c \quad \Rightarrow \quad x^2 + y^2 = e^c - 1 \]

For \(C > 0 \), these are circles of radius \(e^c - 1 \).