sect 1.7 #34 (true or false)

we know by hypothesis

1) \(\hat{v}_1 \) and \(\hat{v}_2 \) in \(\mathbb{R}^d \). It can be done exactly the same for \(\mathbb{R}^n \).

2) \(\hat{v}_2 \) not scalar multiple of \(\hat{v}_1 \).

Then \(\{\hat{v}_1, \hat{v}_2\} \) is linearly independent.

Answer: False. Counter-example

\(\hat{v}_1 = \hat{0} \) and \(\hat{v}_2 \neq \hat{0} \).

If we ask \(\hat{v}_1 \neq \hat{0} \) and \(\hat{v}_2 \neq \hat{0} \), then the statement is true.

We prove this as follows:

P: \(\hat{v}_2 \) not scalar multiple of \(\hat{v}_1 \), Q: \(\{\hat{v}_1, \hat{v}_2\} \) lin. indep.

\[7Q \Rightarrow 7P. \]

If \(\{\hat{v}_1, \hat{v}_2\} \) lin. dep. then there exists \(c_1 \neq 0 \), \(c_2 \neq 0 \) such that

\[c_1 \hat{v}_1 + c_2 \hat{v}_2 = \hat{0}, \]

\[\Rightarrow c_2 \hat{v}_2 = -c_1 \hat{v}_1 \Rightarrow \hat{v}_2 = \frac{-c_1}{c_2} \hat{v}_1 \]

\[\Rightarrow \hat{v}_2 = C^* \hat{v}_1, \quad \text{where} \quad C^* = \frac{-c_1}{c_2}. \]
(We know)

1) $\vec{v} = \vec{0}$, and \vec{b} a vector in \mathbb{R}^n not specified.

2) L is the line given in parametric form by

$$L = \{ \vec{x} \in \mathbb{R}^n \text{ such that } \vec{x} = \vec{b} + t\vec{v}, \ t \in \mathbb{R} \}$$

If $n=2$

$$\begin{array}{c}
\overrightarrow{\vec{v}} \\
\overrightarrow{\vec{v}}
\end{array}$$

3) $T: \mathbb{R}^n \rightarrow \mathbb{R}^n$ is a linear transformation

Then

The line L is mapped into another line L'

$$L' = \{ \vec{x} \in \mathbb{R}^n \text{ such that } \vec{x} = \vec{q} + s\vec{u}, \ s \in \mathbb{R} \}$$

Proof:

$$\begin{array}{c}
\overrightarrow{\vec{v}} \\
\overrightarrow{\vec{v}}
\end{array} \quad \xrightarrow{T} \quad \begin{array}{c}
\overrightarrow{\vec{v}} \\
\overrightarrow{\vec{v}}
\end{array}$$

We want to show that any $\vec{x} \in L$ is such that $T(\vec{x}) \in L'$

for appropriate \vec{q} and \vec{u}.
So, consider any $\tilde{x} \in L$, then $\tilde{x} = \tilde{p} + t \tilde{v}$, for certain $t \in \mathbb{R}$. Then, using linearity of T.

$$T(\tilde{x}) = T(\tilde{p} + t \tilde{v}) = T(\tilde{p}) + t T(\tilde{v}) = \tilde{q} + t \tilde{u}$$

Where $\tilde{q} = T(\tilde{p})$ and $\tilde{u} = T(\tilde{v})$.

Therefore, any $\tilde{x} \in L$ is such that $T(\tilde{x}) \in L'$, where

$$L' = \left\{ \tilde{x} \in \mathbb{R}^n \text{ such that } \tilde{x} = \tilde{q} + t \tilde{u} \right\}$$

Where \tilde{q} and \tilde{u} are defined as above.
Sect 1.8 # 33

\[T: \mathbb{R}^2 \longrightarrow \mathbb{R}^3 \]

\[\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \quad \rightarrow \quad T(\mathbf{x}) = \begin{bmatrix} x_1 - 3x_2 \\ x_1 - 3 \\ 2x_1 - 5x_2 \end{bmatrix} \]

is not linear

Proof: We already proved that if \(T \) is linear \(T(\mathbf{0}) = \mathbf{0}. \)

Since \(\mathbf{0} = a\mathbf{u} \), for any \(\mathbf{u} \in \mathbb{R}^n. \)

then \(T(\mathbf{0}) = T(a\mathbf{u}) = aT(\mathbf{u}) = a\mathbf{0} = \mathbf{0}. \)

In this particular case,

\[T(\mathbf{0}) = \begin{bmatrix} 0 - 2(0) \\ 0 - 3 \\ 2(0) - 5(0) \end{bmatrix} = \begin{bmatrix} 0 \\ -3 \\ 0 \end{bmatrix} \neq \mathbf{0} \]

Therefore, \(T \) is not linear.

36

Hypothesis

1) \(T: \mathbb{R}^n \rightarrow \mathbb{R}^m \) linear, \(2) \{ \mathbf{u}, \mathbf{v} \} \) lin. indep. in \(\mathbb{R}^n. \)

3) \(\{ T(\mathbf{u}), T(\mathbf{v}) \} \) lin. dependent in \(\mathbb{R}^m. \)

Then, \(T(\mathbf{x}) = \mathbf{0} \) has a nontrivial soln.

Proof: Want to prove that there is \(\mathbf{x}^* \in \mathbb{R}^n \) such that \(T(\mathbf{x}^*) = \mathbf{0}. \)

Consider a linear combination of \(T(\mathbf{u}), T(\mathbf{v}) \) where the scalars \(c_1^* = 0 \) or \(c_2^* = 0, \) but

\[\text{Linearity} \quad c_1^* T(\mathbf{u}) + c_2^* T(\mathbf{v}) = \mathbf{0} \quad \text{(Possible based upon)} \]

\[\text{Condition} \quad T(c_1^* \mathbf{u} + c_2^* \mathbf{v}) = \mathbf{0}. \]

Then \(\mathbf{x}^* = \frac{c_1^* \mathbf{u} + c_2^* \mathbf{v}}{\| \mathbf{v} \|} \quad \text{and} \quad T(\mathbf{x}^*) = \mathbf{0}. \)
18 #29

\[T : \mathbb{R}^2 \rightarrow \mathbb{R}^2 \]

\[T(v) = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} -x_1 \\ x_2 \end{bmatrix} \]
Some good problems of Chapter 1 of lay 4th edition

Sect 1.5
40

We know

1) $A_{3 \times 3}, b \in \mathbb{R}^3$

2) $Ax = b$, does not have a solution.

Want to know if

a vector $\hat{y} \in \mathbb{R}^3$ such that

$A\hat{x} = \hat{y}$ has a unique solution?

If 1 and 2, then by thm 2, the augmented matrix

\[
\begin{bmatrix}
A & 0
\end{bmatrix}
\]

when row reduced echelon form

has a row as

\[
\begin{bmatrix}
0 & 0 & 0 & \ldots & 0 & \text{?} \\
0 & 0 & 0 & \ldots & 0 & \text{?} \\
0 & 0 & 0 & \ldots & 0 & \text{?}
\end{bmatrix}
\]

Then, the reduced row echelon form of A looks like

\[
\begin{bmatrix}
1 & 0 & * \\
0 & 1 & * \\
0 & 0 & 0
\end{bmatrix}
\]

\[
\begin{bmatrix}
1 & * & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{bmatrix}
\]

\[
\begin{bmatrix}
1 & * & * \\
0 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix}
\]

Therefore, if we consider the augmented matrix $[A \mid b]$

we find that its reduced row echelon form has x_3

as free variable in case 1. In case 2, x_2 is a free variable,

and in case 3 x_2 and x_3 are free variables.
Since these three cases are the only possibilities for A under the conditions of the theorem. We conclude that there is not any $y \in \mathbb{R}^3$, such that $A\hat{x} = \hat{y}$, and \hat{x} is unique.
Thm.- If A is square matrix $n \times n$, Ann_n. Then,

$p: A\mathbf{x} = \mathbf{b}$ has a unique solution for any $\mathbf{b} \in \mathbb{R}^n$ if and only if

$q: A$ has a pivot position in every row.

Proof.-

$p \Rightarrow q$

If p is true, then the reduced row echelon form of the augmented matrix $[A \mathbf{b}]$ does not have a row as $[0 \ 0 \ \cdots \ 0 \ 0 \ \cdots \ 0 \ d]$, for any $\mathbf{b} \in \mathbb{R}^n$ (thm.2).

Therefore, the reduced row echelon form of A does not have a row of zeros. In fact, it looks like

$$
\begin{pmatrix}
1 & 0 & \cdots & 0 \\
0 & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 1
\end{pmatrix}
$$

Therefore, the matrix A has a pivot position in every row.

(*) Thus, every row will have a nonzero entry. It can be easily seen that the only possibility for a reduced-row echelon form of a square matrix A, is to have 1 in the diagonal entry as shown above.
If Q is true, the only possible form for the reduced-row echelon form of A is

$$
\begin{pmatrix}
1 & 0 & 0 & \cdots & 0 \\
0 & 1 & 0 & \cdots & 0 \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 1
\end{pmatrix}
$$

Therefore, there are no free variables for the linear system whose augmented matrix is given by $[A \ | \ b]$ for every $b \in \mathbb{R}^n$. Thus, using Thm 2, the solution of $A\tilde{x} = \tilde{b}$ for any $b \in \mathbb{R}^n$ is unique.