Observe that the zero vector is orthogonal to every vector in \(\mathbb{R}^n \) because \(\mathbf{0} \cdot \mathbf{v} = 0 \) for all \(\mathbf{v} \).

The next theorem provides a useful fact about orthogonal vectors. The proof follows immediately from the calculation in (1) above and the definition of orthogonality. The right triangle shown in Fig. 6 provides a visualization of the lengths that appear in the theorem.

The Pythagorean Theorem

Two vectors \(\mathbf{u} \) and \(\mathbf{v} \) are orthogonal if and only if \(\|\mathbf{u} + \mathbf{v}\|^2 = \|\mathbf{u}\|^2 + \|\mathbf{v}\|^2 \).

Orthogonal Complements

To provide practice using inner products, we introduce a concept here that will be of use in Section 6.3 and elsewhere in the chapter. If a vector \(\mathbf{z} \) is orthogonal to every vector in a subspace \(W \) of \(\mathbb{R}^n \), then \(\mathbf{z} \) is said to be **orthogonal to** \(W \). The set of all vectors \(\mathbf{z} \) that are orthogonal to \(W \) is called the **orthogonal complement** of \(W \) and is denoted by \(W^\perp \) (and read as "\(W \) perpendicular" or simply "\(W \) perp").

Example 6 Let \(W \) be a plane through the origin in \(\mathbb{R}^3 \), and let \(L \) be the line through the origin and perpendicular to \(W \). If \(\mathbf{z} \) and \(\mathbf{w} \) are nonzero, \(\mathbf{z} \) is on \(L \), and \(\mathbf{w} \) is in \(W \), then the line segment from \(\mathbf{0} \) to \(\mathbf{z} \) is perpendicular to the line segment from \(\mathbf{0} \) to \(\mathbf{w} \); that is, \(\mathbf{z} \cdot \mathbf{w} = 0 \). See Fig. 7. So each vector on \(L \) is orthogonal to every \(\mathbf{w} \) in \(W \). In fact, \(L \) consists of all vectors that are orthogonal to the \(\mathbf{w}'s \) in \(W \), and \(W \) consists of all vectors orthogonal to the \(\mathbf{z}'s \) in \(L \). That is,

\[
L = W^\perp \quad \text{and} \quad W = L^\perp
\]

The following two facts about \(W^\perp \), with \(W \) a subspace of \(\mathbb{R}^n \), are needed later in the chapter. Proofs are suggested in Exercises 29 and 30. Exercises 27–31 provide excellent practice using properties of the inner product.

1. A vector \(\mathbf{x} \) is in \(W^\perp \) if and only if \(\mathbf{x} \) is orthogonal to every vector in a set that spans \(W \).
2. \(W^\perp \) is a subspace of \(\mathbb{R}^n \).