CHAPTER 9 Diffusion Equations and Parabolic Problems.

Consider IBVP:

\[
\begin{align*}
U_t &= \ddot{U} + U_{xx}, \quad 0 < x < 1, \quad 0 < t. \\
U(x,0) &= \eta(x) \\
U(0,t) &= \varphi(t), \quad t > 0 \\
U(1,t) &= \psi(t), \quad t > 0
\end{align*}
\]

(1) (2) (3) (4)

Discretization: Grid

\[X_i = \Delta X, \quad i = 0, \ldots, N+1\]

\[t_n = n \Delta t, \quad n = 0, \ldots, M\]

\[h = \Delta X, \quad \Delta = \Delta t\]

\[U_i^n = U(x_i,t_n)\]

FTCS numerical method

(i) Approx. of \((U_t)_i^n, \) (forward difference)

\[U_i^{n+1} = U_i^n + \Delta (U_t)_i^n + \frac{\Delta^2}{2} (U_{tt})_i^n + \theta \]

\[\Rightarrow \quad (U_t)_i^n = \frac{U_i^{n+1} - U_i^n}{\Delta t} - \frac{\Delta^2}{2} (U_{tt})_i^n + \theta \]

\[0 < \theta < 1\]

(5)
Similarly, central approx. of $(U_{xx})_i^n$

\[(U_{xx})_i^n = \frac{U_{i+1}^n - 2U_i^n + U_{i-1}^n}{h^2} - \frac{h^2}{12} (U_{xxxx})_{i+\frac{1}{2}}^n \] (6)

Subst. (5) - (6) into (1)

\[\frac{U_{i+1}^n - U_i^n}{k} - \frac{\sigma}{2} (U_{tt})_{i}^{n+1} = \frac{1}{h^2} \left[\frac{U_{i+1}^n - 2U_i^n + U_{i-1}^n}{h^2} - \frac{h^2}{12} (U_{xxxx})_{i+\frac{1}{2}}^n \right] \]

Neglecting discretization errors, it leads to

\[\frac{U_i^{n+1} - U_i^n}{k} = \frac{\sigma}{h^2} (U_{i+1}^n - 2U_i^n + U_{i-1}^n) \] (6.1)

Explicit method

\[U_i^{n+1} = U_i^n + \frac{\sigma k}{h^2} (U_{i+1}^n - 2U_i^n + U_{i-1}^n), \quad i = 1, 2, \ldots, m \] (7)

FT-CS finite difference method for Heat Condu. (1-D).

STENCIL

Explain "marching in time" process.
by calling $r = \frac{\sigma k}{h^2}$ (7) Can be written as

$$U_{i}^{n+1} = r U_{i-1}^{n} + (1-2r) U_{i}^{n} + r U_{i+1}^{n}$$

(7.1)

$\quad i=1,2,...,m$

Interior points

Explicit scheme

BCs: $U_{0}^{n} = G_{0}(tn)$, $U_{m+1}^{n} = G_{1}(tn)$, $n = 1,2,...,N_{max}$

IC: $U_{i}^{0} = \eta (x_{i})$, $i = 1,2,...,m$

Basic Experiment: Example 2.3.1

$$U_{t} = \sigma U_{xx}, \quad 0 < x < 1, \quad t > 0$$

$$U(0,t) = 0, \quad U(1,t) = 0, \quad t > 0$$

$$U(x,0) = \begin{cases} 2x, & 0 \leq x \leq \frac{1}{2} \\ 2(1-x), & \frac{1}{2} \leq x \leq 1 \end{cases}$$

Exact Soln:

$$U(x,t) = \sum_{k=1}^{\infty} \frac{8 \sin \left(\frac{k\pi x}{2}\right)}{(k\pi)^2} e^{-k^2 \pi^2 t} \sin (k\pi x).$$
Run the following experiments:

Book Exp. 1:

\[
\begin{align*}
\Delta t &= 0.001 \\
\Delta x &= 0.1 \\
\sigma &= 1
\end{align*} \Rightarrow r = \frac{\sigma \Delta t}{\Delta x^2} = 0.1
\]

Book Exp. 2:

\[
\begin{align*}
\Delta t &= 0.01 \\
\Delta x &= 0.1 \\
\sigma &= 1
\end{align*} \Rightarrow r = \frac{\sigma \Delta t}{\Delta x^2} = 1
\]

Other Experiments:

Experiment 3:

\[
\begin{align*}
\Delta t &= 0.0008 \\
\Delta x &= 0.05 \\
\sigma &= 1
\end{align*} \Rightarrow r = 0.32
\]

Experiment 4:

\[
\begin{align*}
\Delta t &= 0.001 \\
\Delta x &= 0.05 \\
\sigma &= 0.3 \\
t_{\text{max}} &= 0.3
\end{align*} \Rightarrow r = 0.4
\]

Experiment 5:

\[
\begin{align*}
\Delta t &= 0.0012 \\
\Delta x &= 0.05 \\
\sigma &= 1 \\
t_{\text{max}} &= 0.3
\end{align*} \Rightarrow r = 0.48
\]

Exp. 6:

\[
\begin{align*}
\Delta t &= 0.00125 \\
\Delta x &= 0.05 \\
\sigma &= 1 \\
t_{\text{max}} &= 0.3
\end{align*} \Rightarrow r = 0.5
\]

Exp. 7:

\[
\begin{align*}
\Delta t &= 0.00129 \\
\Delta x &= 0.05 \\
\sigma &= 1 \\
\end{align*} \Downarrow \Rightarrow r = 0.516
Local truncation error and consistency

Let's define

Continuous differential operator: \[P_u = u_t - \sigma u_{xx} \] (8)

Discrete finite difference operator:

\[P^\Delta u_i^n = \frac{u_{i+1}^{n+1} - u_i^{n+1}}{\Delta t} - \sigma \frac{u_{i+1}^{n} - 2u_i^{n} + u_{i-1}^{n}}{\Delta x^2} \] (9)

By substituting a sufficiently smooth function \(u(x, \varepsilon) \) into (9)

\[P^\Delta u_i^n = \frac{u_{i+1}^{n+1} - u_i^{n+1}}{\Delta t} - \sigma \frac{u_{i+1}^{n} - 2u_i^{n} + u_{i-1}^{n}}{\Delta x^2} \] (10)
Now,
\[
\frac{V_i^{n+1} - V_i^n}{\Delta t} = \left(\frac{V_{ee}}{\Delta t}\right)_i + \frac{K}{2} \left(\frac{V_{ee}}{\Delta t}\right)_i^{n+1} \tag{11}
\]
\[
\frac{V_{ix}^n - 2V_i^n + V_{i-1}^n}{\Delta x^2} = \left(V_{xx}\right)_i^n + \frac{\Delta t}{12} \left(V_{xxxx}\right)_{i+\frac{1}{2}}^n \tag{12}
\]

Therefore, substituting (11) and (12) into (10)

\[
P_{V_i} V_i^n = \left(\frac{V_{ee}}{\Delta t}\right)_i^n + \frac{K}{2} \left(\frac{V_{ee}}{\Delta t}\right)_i^{n+1} - \sigma \left(V_{xx}\right)_i^n - \sigma \frac{\Delta t}{12} \left(V_{xxxx}\right)_{i+\frac{1}{2}}^n
\]

or

\[
P_{V_i} V_i^n = P_v(x_i; t^n) + \left[\frac{K}{2} \left(\frac{V_{ee}}{\Delta t}\right)_i^{n+1} - \sigma \frac{\Delta t}{12} \left(V_{xxxx}\right)_{i+\frac{1}{2}}^n \right]
\]

\[
\Rightarrow P_v(x_i; t^n) - P_{V_i} V_i^n = -\frac{K}{2} \left(\frac{V_{ee}}{\Delta t}\right)_i^{n+1} + \sigma \frac{\Delta t}{12} \left(V_{xxxx}\right)_{i+\frac{1}{2}}^n
\]

Definition: The local discretization error of the FT-CS difference approx. for the heat equation differential operator is

\[
\tau_i^h = P_v(x_i; t^n) - P_{V_i} V_i^n = -\frac{K}{2} \left(\frac{V_{ee}}{\Delta t}\right)_i^{n+1} + \sigma \frac{\Delta t}{12} \left(V_{xxxx}\right)_{i+\frac{1}{2}}^n
\]
In general, if P is a continuous differential operator and $P_\Delta V_i^n$ is a discrete finite difference operator.

Definition. The local discretization error of the finite difference $P_\Delta V_i^n$ approximation for the continuous operator P is

$$T_i^n = P_\Delta V_i^n(x_i, t_n) - P V_i^n$$ \hspace{1cm} (5.0)

Differential Equation defined by differential operator "L"

$$P_u(x,t) = 0$$ \hspace{1cm} (5.1)

Finite difference scheme defined by discrete finite diff. operator "P_Δ"

$$P_\Delta U_i^n = 0$$ \hspace{1cm} (5.2)

Definition. (Consistency)

A finite difference scheme (5.2) is consistent with a PDE (5.1), if the local discretization error tends to zero as $\Delta x \to 0$ and $\Delta t \to 0$.
Convergence

Definition:

A finite difference approximation \(\tilde{U}^n = \begin{bmatrix} U^n_0 \\ U^n_1 \\ \vdots \\ U^n_J \end{bmatrix} \) converges to the solution of a partial differential equation

\[
\tilde{U}^n = \begin{bmatrix} U^n_0 \\ U^n_1 \\ \vdots \\ U^n_J \end{bmatrix}
\]

subject to initial or boundary conditions,

\[U^n_j = U(x_j, t^n) \]

on a time \(0 \leq t \leq T \) in a particular vector norm if

\[
\| \tilde{U}^n - \tilde{U}^n \| \to 0, \quad n \to \infty, \quad \Delta x \to 0, \quad \Delta t \to 0, \quad n \Delta t \leq T.
\]

Remark: Convergence implies that the discrete and continuous solutions approach each other for \(t \in (0, T) \) in a particular vector norm as the mesh spacing decreases.
Convergence of FT-CS scheme for heat equation in $\Omega \times (0, \infty)$.

\[
\begin{cases}
U_t = \sigma U_{xx}, & t > 0, \quad 0 < x < 1, \\
U(x,0) = \phi(x), \\
U(0,t) = g(t), \quad U(1,t) = h(t).
\end{cases}
\]

FT-CS finite difference approximation.

\[
\frac{U_j^{n+1} - U_j^n}{\Delta t} - \sigma \left[\frac{U_{j+1}^n - 2U_j^n + U_{j-1}^n}{\Delta x^2} \right] = \frac{\Delta t}{2} \left(U_{tt} \right)_j^n - \frac{\sigma \Delta x^2}{12} \left(U_{xxxx} \right)_j^n
\]

\[
0 < \sigma < 1, \quad 0 < \Delta x < 1
\]

Local truncation error is defined as

\[
\tau_j^n = -\frac{\Delta t}{2} (U_{tt})_j^n + \sigma \frac{\Delta x^2}{12} (U_{xxxx})_j^n
\]

(1.2)

Solving for U_j^{n+1} in (1.1).

\[
U_j^{n+1} = r U_j^n + (1-2r) U_{j-1}^n + r U_{j+1}^n - \Delta t \tau_j^n
\]

(1.3)

Also neglecting the L.T.E., we obtain the numerical scheme.

\[
\begin{cases}
U_j^{n+1} = r U_j^n + (1-2r) U_{j-1}^n + r U_{j+1}^n, \\
\end{cases}
\]

(1.4)

\[
\begin{align*}
\tau_j = \tau_j^n, & \quad \tau_0^n = g(t_n), \quad \tau_{J+1}^n = h(t_n) = h_n, \\
U_j^0 = \phi(x_j) = \phi_j.
\end{align*}
\]
Subtracting (1.4) from (1.3), and calling

\[e_j^n = y_j^n - y_j^{n+1}, \]

we obtain

\[e_j^{n+1} = r \frac{e_j^n}{e_{j+1} - e_{j-1}} e_j^n + r e_j^{n+1} - \Delta t \dot{y}_j^n \]

Applying triangular inequality

\[|e_j^{n+1}| \leq r |e_{j+1}^n| + |r - 1| |e_j^n| + r |e_{j+1}^n| + \Delta t |\dot{y}_j^n| \tag{\star} \]

Theorem: FT-CS for heat conduction eqn. converges in max norm when \(r < \frac{1}{2} \).

In other words, we want to prove

that \(\|\ddot{e}\|_\infty \to 0 \), when \(\Delta x \to 0, \Delta t \to 0 \) as \(n \to \infty \).

where

\[\ddot{e}^n = \begin{bmatrix} e_1^n \\ e_2^n \\ \vdots \\ e_{n+1}^n \end{bmatrix} \]

Remark: Notice that \(e_0^n = 0 \) and \(e_1^n = 0 \), for all \(n \).
Assuming there is not rounding errors at the computation in the boundaries.
If \(\|e^n\|_\infty = \max_j |e^n_j| \), \(\|\tilde{r}^n\|_\infty = \max_j |\tilde{r}^n_j| \)

then,
\[
|e^{n+1}_j| \leq (r + |1-2r| + r) \|\tilde{e}^n\|_\infty + \Delta t \|\tilde{r}^n\|_\infty \quad j = 1, 2, \ldots, J-1
\]

If \(r \leq \frac{1}{2} \Rightarrow 1-2r \geq 0 \) and \(|1-2r| = 1-2r \)
\[
|e^{n+1}_j| \leq \|\tilde{e}^n\|_\infty + \Delta t \|\tilde{r}^n\|_\infty \quad j = 1, 2, \ldots, J-1
\]

\[\Rightarrow \frac{\|\tilde{e}^{n+1}\|}{\theta} \leq \frac{\|\tilde{e}^n\|}{\theta} + \Delta t \frac{\|\tilde{r}^n\|}{\theta} \qquad (\star \star) \]

Iterating
\[
\|\tilde{e}^{n+1}\|_\infty \leq \|\tilde{e}^0\|_\infty + \Delta t (\|\tilde{r}^0\|_\infty + \|\tilde{r}^{n-1}\|_\infty + \ldots + \|\tilde{r}^{n-(n-1)}\|_\infty) \leq \|\tilde{e}^0\|_\infty + \Delta t \sum_{k=0}^{n-1} \|\tilde{r}^k\|_\infty \Delta t
\]

where \(r \overset{\text{def}}{=} \max_{0 \leq k \leq n} \|\tilde{r}^k\|_\infty \)

Since \(\|\tilde{e}^0\|_\infty \to 0 \) and \(n \Delta t \leq T \Rightarrow \|\tilde{e}^n\| \leq r \Delta t \)

\[\Rightarrow \|\tilde{e}^n\|_\infty \leq Tr \]

\[r \overset{\text{def}}{=} \frac{\sigma \Delta t}{\Delta x^2} \leq \frac{1}{2} \Rightarrow \Delta t \leq \frac{1}{2 \sigma} (\Delta x)^2 \]

Severe restriction in time step, since \((\Delta x)^2\) may be very small.
Now
\[T \leq \frac{\Delta t}{\sigma} K + \sigma \frac{\Delta x^2}{12} M \]

using definition of truncation error (1.2)
\[K = \max_{0 \leq t \leq T} \left\| u_{t+1} \right\|, \quad M = \max_{0 \leq t \leq T} \left\| u_{xxx} \right\|/\]

\[\Rightarrow \left\| \hat{e}^n \right\|_\infty \leq T \left(\frac{\Delta t}{\sigma} K + \sigma \frac{\Delta x^2}{12} M \right) \to 0 \]

\[\Delta t \to 0, \quad \Delta x \to 0, \quad n \to \infty \]

and \(n \Delta t \leq T \)

Remark: The inequality (*) is different for \(j = 1 \) and \(j = J-1 \).

In fact,
\[r \leq \frac{1}{2} . \]

For \(j = 1 \):
\[|e_j^n| \leq r |e_0^n| + (1-2r) |e_1^n| + r |e_2^n| + \Delta t |\hat{T}_1^n| \]

For \(j = J-1 \):
\[|e_{J-1}^n| \leq r |e_{J-2}^n| + (1-2r) |e_{J-1}^n| + r |\hat{e}_J^n| + \Delta t |\hat{T}_J^n| \]

In both cases:
\[j = 1 \quad \text{or} \quad \sqrt{e_j^n} \leq (1-r) \sqrt{\tilde{T}_1^n} + \Delta t \sqrt{\hat{T}_1^n} \leq \sqrt{e_0^n} + \Delta t \sqrt{\hat{T}_0^n} \]

Same as (**) So, we proceed identically from here.
The condition \(R = 1/2 \) impose limitations on the choice of \(\Delta t \).

How can we define numerical schemes for our IBVP with less limitation on the choice of \(\Delta t \)?

Idea: Domain of dependence for num. sch. (2)

![Diagram showing the domain of dependence and the relationship between \(\tan \theta \) and \(\Delta x / \Delta t \).]

Obviously, boundary values at points Q and R at level \(n \) don't enter into the computation of P at level \(n \).
From PDE theory, we know that solution at point P certainly depends on boundary data at Q and R.

From the previous graph, we conclude that the angle Θ should be $\pi/2$ (or close to it) for Q and R to enter into the computation at P.

In previous work, we performed two experiments depending on r: values, for FT-CS scheme.

a) $r = 10^{-1}$, was stable and converges.

b) $r = 1$, Num. Sch. unstable.

In (a), $\Theta = \tan^{-1} \left(\frac{\Delta x}{\Delta t} \right) = \tan^{-1} \left(\frac{\sigma}{r \Delta x} \right)$, $r = 10^{-1}$.

\[\Theta = \tan^{-1} \left(\frac{1}{10^{-1} \cdot 10^{-3}} \right) = \tan^{-1} (100) \approx 1.56 \approx \pi/2 \]

In (b), $r = 1$.

\[\Theta = \tan^{-1} \left(\frac{1}{1 \times 10^{-1}} \right) = \tan^{-1} (10) \approx 1.47 < \pi/2 \]
The previous analysis motivates the construction of implicit schemes. For implicit schemes, the solution at \(P \) will involve all the other unknowns at the same time level, and it will also include the boundary conditions at \(Q \) and \(R \).

Example: BT-C5 at the point \((x_j, t_{n+1})\)

\[
(U_t)_{j}^{n+1} = \sigma (U_{xx})_{j}^{n+1}
\]

Approx. by

\[
\frac{U_j^{n+1} - U_j^n}{\Delta t} = \sigma \frac{U_{j-1}^{n+1} - 2U_j^{n+1} + U_{j+1}^{n+1}}{\Delta x^2}
\]

\(j = 1, 2, \ldots, J-1 \)

Also called backward-Euler method.

It can be written as

\[
\begin{bmatrix}
-rU_{j-1}^{n+1} + (1+2r)U_j^{n+1} - rU_{j+1}^{n+1} = U_j^n
\end{bmatrix}
\]

\(j = 1, 2, \ldots, J-1 \)

For our IBVP (1), we also know

\[
U_0^{n+1} = G(t_{n+1}) = \bar{g}_{n+1}, \quad U_J^{n+1} = \bar{h}_{n+1}
\]
Computational stencil:

Obviously, for a given \(J \) equ. (4.1) is not enough. A system of equations needs to be solved at every time level \(n+1 \).

In particular, if \(J = 4 \)

We choose a system of 3 equs. to be solved simultaneously. In fact,

\[
\begin{align*}
 j &= 1, & -r U_1^{n+1} + (1+2r) U_1^n - r U_2^{n+1} &= V_1^n \\
 j &= 2, & -r U_1^n + (1+2r) U_2^{n+1} - r U_3^n &= U_2^n \\
 j &= 3, & -r U_2^{n+1} + (1+2r) U_3^{n+1} - r U_4^{n+1} &= U_3^n
\end{align*}
\]
With BCs:
\[U_0^{n+1} = g^{n+1}, \quad U_4^{n+1} = h^{n+1} \]

The above system can be written in matrix form as

\[
\begin{pmatrix}
1 + 2r & -r & 0 \\
-r & 1 + 2r & -r \\
0 & -r & 1 + 2r
\end{pmatrix}
\begin{pmatrix}
U_1^{n+1} \\
U_2^{n+1} \\
U_3^{n+1}
\end{pmatrix}
= \begin{pmatrix}
U_1^n + rg^{n+1} \\
U_2^n \\
U_3^n + rh^{n+1}
\end{pmatrix}
\]

For a larger partition: \(j = 1, \ldots, J-1 \)
\(n = 1, \ldots, N \)

A linear system for the unknowns: \(U_1^n, U_2^n, \ldots, U_J^n \) at each time level \(t_n \) needs to be solved.

\[A \tilde{U}^{n+1} = \tilde{F}^n \]

Where
\[A = \begin{bmatrix}
1 + 2r & -r & 0 & 0 & \cdots & 0 \\
-r & 1 + 2r & -r & 0 & \cdots & 0 \\
0 & -r & 1 + 2r & -r & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \ddots & \vdots \\
0 & \cdots & -r & -r & 1 + 2r & -r \\
0 & \cdots & \cdots & \cdots & \cdots & \cdots \\
\end{bmatrix}_{(J-1) \times (J-1)} \]

\[\dot{U}^{n+1} = \begin{bmatrix}
U_1^{n+1} \\
U_2^{n+1} \\
\vdots \\
U_m^{n+1} \\
\end{bmatrix}_{(J-1) \times 1}, \quad \dot{F}^n = \begin{bmatrix}
U_1^n + r g^{n+1} \\
U_2^n \\
U_3^n \\
\vdots \\
U_m^n + r f^{n+1} \\
\end{bmatrix}_{(J-1) \times 1} \]

At every time step, this system is solved.
Another Implicit Scheme:

Crank-Nicholson method:

\[-\frac{r}{2} U_i^{n+1} + (1+r) U_i^{n+1} - \frac{r}{2} U_i^{n+1} = \frac{r}{2} U_i^n + (1-r) U_i^n + \frac{r}{2} U_i^{n+1} \]

\[i = 1, 2, \ldots, m \]

Derivation:

Approximate \(U_t \) and \(U_{xx} \) at the point \((x_i, t_{n+1/2})\)

Using centered differences in both time and space

With time step size \(\Delta t \) and space step size \(\Delta x \):

\[(U_t)^{n+1/2}_{i} = \sigma (U_{xx})_{i}^{n+1/2} \]

\[\text{CT-CS} \]

\[\left(\frac{\text{BE}}{\Delta x} \right) \]

\[\frac{U_i^{n+1} - U_i^n}{\Delta t} = \sigma \frac{U_{i+1}^{n+1/2} - 2U_i^{n+1/2} + U_{i-1}^{n+1/2}}{\Delta x^2} \]
Using average in time

\[\frac{U_i^{n+1} - U_i^n}{\kappa} = \sigma \left(\frac{U_{i+1}^{n+1} + U_i^{n+1}}{2} - 2 \frac{U_i^{n+1} + U_i^n}{2} + \frac{U_{i-1}^{n+1} + U_i^n}{2} \right) \]

\[\Rightarrow \]

\[U_i^{n+1} - U_i^n = \frac{\sigma \kappa}{2h^2} \left[U_{i+1}^{n+1} - 2U_i^{n+1} + U_{i-1}^{n+1} + U_i^{n+1} - 2U_i^n + U_i^n \right] \]

\[r = \frac{\sigma \kappa}{h} \]

\[\frac{-r}{\Delta x} U_{i-1} + (1+r) U_i^{n+1} - \frac{r}{\Delta x} U_{i+1}^{n+1} = \]

\[= \frac{r}{\Delta x} U_i^n + (1-r) U_i^n + \frac{r}{\Delta x} U_{i+1}^n \]

\[i = 1, \ldots, m \]

In matrix form:

\[A \hat{U}^{n+1} = B \hat{U}^n + (C \hat{D}) \]

(11.1)

\[\Rightarrow \text{due to BCs at } i=0, \text{ and } i=m+1. \]

Remark:

Matrix Equation (11.1) needs to be solved at each time level "n".
where

\[
A = \begin{bmatrix}
1 + r & -r/2 & 0 & 0 & \cdots & 0 \\
-r/2 & 1 + r & -r/2 & 0 & \cdots & 0 \\
0 & -r/2 & 1 + r & -r/2 & \cdots & 0 \\
\vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\
0 & 0 & \cdots & -r/2 & 1 + r & -r/2 \\
0 & 0 & \cdots & 0 & -r/2 & 1 + r \\
\end{bmatrix}_{m \times m}
\]

\[
B = \begin{bmatrix}
1 - r & r/2 & 0 & 0 & \cdots & 0 \\
r/2 & 1 - r & r/2 & 0 & \cdots & 0 \\
0 & r/2 & 1 - r & r/2 & \cdots & 0 \\
\vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\
0 & 0 & \cdots & r/2 & 1 - r & r/2 \\
r/2 & 0 & \cdots & 0 & r/2 & 1 - r \\
\end{bmatrix}_{m \times m}
\]

\[
\bar{C}^n = \begin{bmatrix}
\frac{r}{2} g^{n+1} + \frac{r}{2} g^n \\
0 \\
\vdots \\
0 \\
\frac{r}{2} h^{n+1} + \frac{r}{2} h^n
\end{bmatrix}
\]

\[
\bar{U}^n = \begin{bmatrix}
U_1^n \\
U_2^n \\
\vdots \\
U_m^n
\end{bmatrix}
\]
Notice that the FT-CS difference scheme for heat conduction can be expressed in matrix form:

\[
\begin{bmatrix}
U_1^{n+1} \\
U_2^{n+1} \\
\vdots \\
U_{j-1}^{n+1}
\end{bmatrix}
= \begin{bmatrix}
1-2r & r & 0 & \cdots & 0 \\
r & 1-2r & r & \cdots & 0 \\
0 & r & 1-2r & r & \cdots \\
0 & 0 & \ddots & \ddots & \ddots \\
0 & 0 & \cdots & r & 1-2r
\end{bmatrix}
\begin{bmatrix}
U_1^n \\
U_2^n \\
\vdots \\
U_{j-1}^n
\end{bmatrix}
\]

or \(\hat{\mathbf{U}}^{n+1} = \mathbf{L}_{\Delta} \hat{\mathbf{U}}^n \).

Stability

Definition: Consider two different initial value problems for the same finite difference scheme, i.e.,

\[
\hat{\mathbf{U}}^{n+1} = \mathbf{L}_{\Delta} \hat{\mathbf{U}}^n, \quad \hat{\mathbf{U}}^0 = \phi
\]

\[
\hat{\mathbf{V}}^{n+1} = \mathbf{L}_{\Delta} \hat{\mathbf{V}}^n, \quad \hat{\mathbf{V}}^0 = \psi
\]

This finite difference scheme is stable if there exists a positive constant \(C \), independent of the mesh spacing and initial data, such that

\[\| \hat{\mathbf{U}}^n - \hat{\mathbf{V}}^n \| \leq C \| \hat{\mathbf{U}}^0 - \hat{\mathbf{V}}^0 \|, \quad n \to \infty, \ \Delta x \to 0, \ \Delta t \to 0, \ \text{not} \leq T. \]
If L_Δ is linear, the definition of stability can be written as

Definition: A finite difference scheme

$$U^{n+1}_\Delta = L_\Delta U^n_\Delta,$$

for a homogeneous IVP U^n_Δ, is stable if there exists a positive constant C, independent of the mesh spacing and initial data such that

$$\|U^n_\Delta\| \leq C \|U^0_\Delta\|, \ n \to \infty, \ \delta x \to 0, \ \delta t \to 0, \ n \delta t \leq T.$$

Remark: When L_Δ is linear the two definitions are equivalent.

Maximum principle

Finite difference schemes as the FT-CS and Crank-Nicholson for the heat equation are called one-level finite difference schemes because they only involve solutions at time levels n and $n+1$.
Theorem.

A sufficient condition for stability of the one-level finite difference scheme

\[U_j^{n+1} = \sum_{|s| \leq S} C_s U_{j+s}^n \]

in the \(\| \cdot \|_{\infty} \) is that all coefficients \(C_s \) \((|s| \leq S) \) be positive and add to unity.

Proposition

The FT-CS finite difference scheme applied to a homogeneous IVP is stable if \(r \leq \frac{1}{2} \).

Proof:

\[U_j^{n+1} = r U_{j-1}^n + (1 - 2r) U_j^n + r U_{j+1}^n \]

Then

\[\sum_{|s| \leq S} C_s = r + (1 - 2r) + r = 1 \]

Since \(r \leq \frac{1}{2} \)

\[r = \sigma \frac{\Delta t}{\Delta x^2} > 0. \]
Proof of Theorem

Using triangular inequality in (*)

\[|U_j^{n+1}| \leq \sum_{k=1}^{s} |C_k| |U_{j+k}^n|, \quad j = 1, 2, \ldots, s-1 \]

introducing \(|| . ||_\infty \)

\[||U^{n-1}|| = \left(\sum_{k=1}^{s} C_k \right) ||U^n|| = ||U^n|| \]

\[\Rightarrow ||U^n|| \leq ||U^{n-1}|| \leq \ldots \leq ||U^0||, \quad n \to \infty, \Delta x \to 0, \Delta t \to 0, \quad n \Delta t \leq T. \]

what happens if \(\sum_{k=1}^{s} C_k = C > 1 \) ?

Order of Numerical Scheme

Definition: A consistent finite-difference scheme approximating a partial differential equation is of order \(p \) in time and order \(q \) in space if

\[T_j^n = O(\Delta t^p) + O(\Delta x^q). \]