Consider the IBVP.

\[
\begin{aligned}
U_t &= \sigma U_{xx}, \quad 0 < x < 1, \quad t > 0, \\
U(x, 0) &= \phi(x), \quad 0 \leq x \leq 1, \\
U(0, t) &= f(t), \quad U(1, t) = g(t), \quad t > 0.
\end{aligned}
\]

\tag{1}

FT-CS Scheme

\[
\begin{aligned}
U_{j}^{n+1} &= r U_{j-1}^{n} + (1 - 2r) U_{j}^{n} + r U_{j+1}^{n}, \quad j = 1, 2, \ldots, J-1, \\
U_{j}^{0} &= \phi(x_{j}) = \phi(j \Delta x), \\
U_{0}^{n} &= f(t_{n}) = f(n \Delta t), \quad U_{j}^{n} = g(n \Delta t). \\
\end{aligned}
\]

\tag{2}

\(r = \frac{\sigma \Delta t}{\Delta x^2} \).

For homogeneous B.C.s. \(f(t) \equiv 0, \quad g(t) \equiv 0 \)

we have proved **FT-CS converges**

\textbf{FT-CS Stable in II.IIIo}

\[0 < r \leq \frac{1}{2} \]

\[r = \frac{\sigma \Delta t}{\Delta x^2} \]

\[\Rightarrow \Delta t = \frac{r \Delta x^2}{\sigma} \]
The condition \(R \leq \frac{1}{2} \) impose limitations on the choice of \(\Delta t \).

How can we define numerical schemes for our IBVP with less limitation on the choice of \(\Delta t \)?

Idea: Domain of dependence for num. sch. (2)

Obviously, boundary values at points \(Q \) and \(R \) at level \(n \) don't enter into the computation of \(P \) at level \(n \).
From PDE theory, we know that solution at point P certainly depends on boundary data at Q and R.

From the previous graph, we conclude that the angle Θ should be $\pi/2$ (or close to it) for Q and R to enter into the computation at P.

In Chapter 2, we perform two experiments depending on r. Values for FT-CS Scheme:

a) $r = 10^{-1}$, Num. scheme was stable and converges.

\[\Delta x = 0.1, \quad \Delta t = 10^{-3}, \quad \sigma = 1 \]

b) $r = 1$, Num. scheme unstable.

\[\Delta x = 0.1, \quad \Delta t = 10^{-2}, \quad \sigma = 1. \]

In (a) $r = 10^{-1}$

\[\Theta = \tan^{-1} \left(\frac{\Delta x}{\Delta t} \right) = \tan^{-1} \left(\frac{\sigma}{r \Delta x} \right) \]

\[\Rightarrow \frac{\Delta x}{\Delta t} = \frac{\sigma}{r \Delta x} \]

In (b) $r = 1$

\[\Theta = \tan^{-1} \left(\frac{1}{10 \times 10^{-1}} \right) = \tan^{-1} (100) \approx 1.56 \approx \pi/2 \]

\[\Theta = \tan^{-1} \left(\frac{1}{1 \times 10^{-1}} \right) = \tan^{-1} (10) \approx 1.47 < \pi/2 \]
The previous analysis motivates the construction of implicit schemes. For implicit schemes, the solution at \(P \) will involve all the other unknowns at the same time level, and it will also include the boundary conditions at \(Q \) and \(R \).

Example: BT-CS at the point \((x_j, t_{nn}) \)

\[
(\Delta t)^{n+1} = \sigma \left(U_{xx}\right)^{n+1}_j
\]

Approx. by

\[
\frac{U_j^{n+1} - U_j^n}{\Delta t} = \sigma \frac{U_{j-1}^{n+1} - 2U_j^{n+1} + U_{j+1}^{n+1}}{\Delta x^2}
\]

Also called backward-Euler method.

It can be written as

\[
-\gamma U_{j+1}^{n+1} + (1 + 2\gamma) U_j^{n+1} - \gamma U_{j-1}^{n+1} = U_j^n \quad \rightarrow \quad (4.1)
\]

For our IBVP (1), we also know

\[
U_0^{n+1} = f(t_{nn}) = f^{n+1}, \quad U_j^{n+1} = g^{n+1}
\]
Computational stencil:

\[\begin{array}{c}
 \text{\textbullet} \\
 n+1 \\
 j_1 \quad j \quad j+1 \\
 n \\
 j-1 \\
 \end{array} \]

Obviously, for a given \(j \) eqn. (4.1) is not enough. A system of equations needs to be solved at every time level \(n+1 \).

In particular, if \(J=4 \)

\[\begin{array}{c}
 \text{\textbullet} \\
 n+1 \\
 n \\
 j=0 \quad 1 \quad 2 \quad 3 \quad 4 \\
 \end{array} \]

We have a system of 3 eqns. to be solved simultaneously. In fact,

\[\begin{align*}
 &j=1, \quad -r \, U_j^{n+1} + (1-2r) \, U_j^{n} - r \, U_{j+1}^{n} = U_j^{n} \\
 &j=2, \quad -r \, U_j^{n+1} + (1-2r) \, U_j^{n} - r \, U_{j+1}^{n} = U_j^{n} \\
 &j=3, \quad -r \, U_j^{n+1} + (1-2r) \, U_j^{n} - r \, U_{j+1}^{n} = U_j^{n}
\end{align*} \]
B.C's

\[U_{0}^{n+1} = f^{n+1}, \quad U_{4}^{n+1} = g^{n+1} \]

The above system can be written in matrix form as

\[
\begin{pmatrix}
1 - 2r & -r & 0 \\
-r & 1 - 2r & r \\
0 & -r & 1 - 2r
\end{pmatrix}
\begin{pmatrix}
U_{1}^{n+1} \\
U_{2}^{n+1} \\
U_{3}^{n+1}
\end{pmatrix}
=
\begin{pmatrix}
U_{1}^{n} \\
U_{2}^{n} \\
U_{3}^{n}
\end{pmatrix}
+ r
\begin{pmatrix}
0 \\
0 \\
0
\end{pmatrix}

Since this implicit scheme involves the B.C to compute all the unknowns at level \(t_{n+1} \), we expect better stability properties.

We can take a more general point of view and combine BT-CS at \((x_j, t_{n+1}) \) with FT-CS at \((x_j, t_n) \) in what is called weighted average.
\[
\text{BT-CS at } (x_j, t^n): \quad \frac{U_j^{n+1} - U_j^n}{\Delta t} = \sigma \left(\frac{U_{j+1}^{n+1} - 2U_j^{n+1} + U_{j-1}^{n+1}}{\Delta x^2} \right) \cdot \theta \Rightarrow \Delta^2 U_j^{n+1} \\
\text{FT-CS at } (x_j, t^n): \quad \frac{U_j^{n+1} - U_j^n}{\Delta t} = \sigma \left(\frac{U_{j+1}^n - 2U_j^n + U_{j-1}^n}{\Delta x^2} \right) \cdot (1-\theta) \Rightarrow \Delta^2 U_j^n
\]

\[
\frac{U_j^{n+1} - U_j^n}{\Delta t} = \sigma \left(\frac{\theta \Delta^2 U_j^{n+1} + (1-\theta) \Delta^2 U_j^n}{\Delta x^2} \right), \quad 0 \leq \theta \leq 1. \tag{7.1}
\]

Clearly, if \(\theta = 0 \) in (7.1) we obtain the explicit FT-CS scheme.

if \(\theta = 1 \) in (7.1) we obtain the Euler implicit BT-CS scheme.

(7.1) can also be written as

\[
-\theta r \gamma_j^{n+1} + (1+\theta r) \gamma_j^{n+1} - \theta r \gamma_j^{n+1} = 0 \tag{7.2}
\]

\[
= r (1-\theta) \gamma_{j+1}^n + [1-r(1-\theta)] \gamma_j^n + r (1-\theta) \gamma_{j-1}^n, \quad j = 1, 2, \ldots, J-1
\]

\[
U_j^{n+1} = f^{n+1}, \quad U_j^{n+1} = g^{n+1}.
\]
(7.1) can be written as

\[
\frac{U_j^{n+1} - U_j^n}{\Delta t} = \sigma \theta \frac{U_{j+1}^{n+1} - 2U_j^{n+1} + U_{j-1}^{n+1}}{\Delta x^2} + \sigma (1-\theta) \frac{U_{j+1}^n - 2U_j^n + U_{j-1}^n}{\Delta x^2}
\]

\[
\Rightarrow \quad U_j^{n+1} = \theta r (U_{j+1}^{n+1} + U_{j-1}^{n+1}) + 2(1-\theta) U_j^n = \ldots \ldots
\]

\[
\Rightarrow -r \sigma U_{j-1}^{n+1} + (1+2\sigma)U_j^n - r \sigma U_{j+1}^{n+1} = \ldots \ldots
\]

\[
\Rightarrow \quad g = 1, 2, \ldots, J-1
\]
\[j = 1 \]
\[-2 \sigma \mathcal{U}_1^{n+1} + (1 + 2 \sigma \epsilon) \mathcal{U}_1^n - \sigma \mathcal{U}_2^n = \]
\[= \sigma \mathcal{U}_0^n \mathcal{R}(\nu \epsilon) \mathcal{F}_m^n + \sigma \mathcal{R}(\nu \epsilon) \mathcal{U}_1^n + \sigma (\nu \epsilon) \mathcal{U}_2^n \]

\[j = 2 \]
\[-2 \sigma \mathcal{U}_1^{n+1} + (1 + 2 \sigma \epsilon) \mathcal{U}_2^n - \sigma \mathcal{U}_3^n = \]
\[= -\sigma \mathcal{R}(\nu \epsilon) \mathcal{F}_m^n \]

\[j = J - 1 \]
\[-2 \sigma \mathcal{U}_J^{n+1} + (1 + 2 \sigma \epsilon) \mathcal{U}_J^n - \sigma \mathcal{R}(\nu \epsilon) \mathcal{F}_m^n \]
\[= \sigma \mathcal{R}(\nu \epsilon) \mathcal{U}_J^n + \sigma (\nu \epsilon) \mathcal{U}_J^n \]
\[+ (1 - 2 \nu \epsilon) \mathcal{U}_J^{n+1} + \sigma (\nu \epsilon) \mathcal{U}_J^n \]

\[\begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} + \sigma \epsilon \begin{bmatrix} 2 & -1 & 0 & \ldots & 0 \\ -1 & 2 & -1 & \ldots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ \vdots & \vdots & \vdots & 2 & -1 \\ \vdots & \vdots & \vdots & \vdots & 1 \end{bmatrix} \]

\[\begin{bmatrix} \mathcal{U}_1^{n+1} \\ \mathcal{U}_2^{n+1} \\ \mathcal{U}_J^{n+1} \end{bmatrix} = \begin{bmatrix} \mathcal{U}_1^n \\ \mathcal{U}_2^n \\ \mathcal{U}_J^n \end{bmatrix} + \mathcal{R}(\nu \epsilon) \mathcal{F}_m^n
\]

where \(\mathcal{F}_m^n \) can be written as \((7.3)\) in page 8.
For $\theta \in (0, 1)$ the computational stencil looks like

\[
\begin{array}{ccc}
 n+1 & & \\
 & \bullet & \\
 n & & \\
 & \bullet & \\
 j-1 & j & j+1
\end{array}
\]

Equation (7.2) in matrix form is also a tridiagonal system for $\theta \in (0, 1)$. In fact,

\[
[I - \rho \theta C] \hat{U}^{n+1} = [I + \gamma (1 - \theta) \gamma] \hat{U}^n + \gamma \hat{f}^n \tag{8.1}
\]

where

\[
\hat{U}^n = \begin{bmatrix}
 U_1^n \\
 U_2^n \\
 \vdots \\
 U_{N-1}^n \\
 U_N^n
\end{bmatrix}, \quad
C = \begin{bmatrix}
 -2 & 1 & 0 & \cdots & 0 \\
 1 & -2 & 1 & \cdots & 0 \\
 \vdots & \vdots & \vdots & \ddots & \vdots \\
 0 & \cdots & 1 & -2 & 1 \\
 \end{bmatrix}, \quad
\hat{f}^n = \begin{bmatrix}
 \theta f_1^{n+1} + (1 - \theta) f_1^n \\
 \vdots \\
 \theta g_1^{n+1} + (1 - \theta) g_1^n \\
 \end{bmatrix}
\]
An important particular scheme from the family of weighted average scheme (7.2) is obtained when $\theta = \frac{1}{2}$. This is called Crank-Nicholson's scheme.

\[
\frac{r}{2} U_{j-1}^{n+1} + (1+r) U_j^{n+1} - \frac{r}{2} U_{j+1}^{n+1} = \frac{r}{2} U_{j-1}^n + (1-r) U_j^n + \frac{r}{2} U_{j+1}^n
\]

\(j = 2, \ldots, J-1.\)

An alternative way to obtain (8.1) is by using centered difference in time approximations for U_t at the point $(x_j, t_{n+\frac{1}{2}})$ and also using centered difference in space approximations for U_{xx} at $(x_j, t_{n+\frac{1}{2}}).$ In fact, \(U_j^{n+\frac{1}{2}} = k (U_{xx})^{n+\frac{1}{2}}\). CTS at $(x_j, t_{n+\frac{1}{2}})$ with step size Δt.

\[
\frac{U_j^{n+1} - U_j^n}{\frac{\Delta t}{2}} = k \frac{U_{j+1}^{n+\frac{1}{2}} - 2U_j^{n+\frac{1}{2}} + U_{j-1}^{n+\frac{1}{2}}}{(\Delta x)^2}
\]
In fact, CT-CS at \((x_j, t_{n+1})\), with time step \(\Delta t\)

\[
\frac{U_j^{n+1} - U_j^n}{2 (\Delta t)} = K \frac{U_{j+1}^{n+1} - 2U_j^{n+1} + U_{j-1}^{n+1}}{\Delta x^2} - 2 \frac{U_j^{n} + U_j^n}{2} + \frac{U_{j+1}^{n} + U_{j-1}^{n}}{2}
\]

Using average in time:

\[
= K \frac{1}{2} \left[\frac{U_{j+1}^{n+1} - 2U_j^{n+1} + U_{j-1}^{n+1}}{\Delta x^2} + \frac{U_{j+1}^{n} + U_{j-1}^{n}}{2} \right]
\]

If \(r = K \frac{\Delta t}{\Delta x^2} \)

\[
U_j^{n+1} - U_j^n = \frac{r}{2} \left[U_{j+1}^{n+1} - 2U_j^{n+1} + U_{j-1}^{n+1} + U_{j+1}^{n} - 2U_j^{n} + U_{j-1}^{n} \right]
\]

\[
-\frac{r}{2} U_{j-1}^{n+1} + (1+r) U_j^n - \frac{r}{2} U_{j+1}^{n+1} = \frac{r}{2} U_{j-1}^{n} + (1-r) U_j^n + \frac{r}{2} U_{j+1}^{n}
\]

Same as (8.1)
(8.1) is a tridiagonal system. There is a faster way to solve it than naive Gauss elimination.

In general, for

$$A\hat{x} = \tilde{f}, \quad A_{nn}$$

$$A = \begin{pmatrix}
 a_1 & c_1 & & \\
 b_2 & a_2 & c_2 & \\
 & b_3 & a_3 & c_3 \\
 & & \ddots & \ddots & \ddots \\
 & & & b_{n-1} & a_{n-1} & c_{n-1} \\
 & & & & b_n & a_n & \end{pmatrix}$$

Assuming that pivoting is not necessary

A can be factored as

$$A = LU$$

Where L: Lower

U: Upper

$$L = \begin{pmatrix}
 1 & & & & & \\
 l_2 & 1 & & & & \\
 & l_3 & 1 & & & \\
 & & \ddots & \ddots & & \\
 & & & l_{n-1} & 1 & \\
 & & & & l_n & 1
\end{pmatrix}, \quad U = \begin{pmatrix}
 U_1 & V_1 & & & & \\
 & U_2 & V_2 & & & \\
 & & \ddots & \ddots & & \\
 & & & \ddots & V_{n-1} & \\
 & & & & U_{n-1} & V_{n-1} \\
 & & & & & U_n
\end{pmatrix}$$
The entries for \(L \) and \(U \) can be computed directly for \(A = LU \).

\[
\begin{pmatrix}
a_1 & c_1 \\
b_2 & a_2 & c_2 \\
\vdots & & \ddots & \ddots \\
b_N & \cdots & \cdots & a_N
\end{pmatrix}
=
\begin{pmatrix}
u_1 & v_1 \\
l_2u_1 & l_2v_1 + u_2 & v_2 \\
\vdots & & \ddots & \ddots \\
l_Nu_{N-1} + u_N
\end{pmatrix}
\]

Therefore, \(u_1 = a_1, \ v_1 = c_1 \)
\(l_2 = b_2 / u_1 \)
\(u_2 = a_2 - l_2v_1 \)
\(v_2 = c_2 \)

In general,
\(u_j = a_j \)
\(v_j = c_j \)
\(j = 2, 3, \ldots, N \)
\(l_j = b_j / u_{j-1} \)
\(u_j = a_j - l_jv_{j-1} \)
\(v_j = c_j \)
edn.
Once the entries of L and U have been determined, the system

\[A \tilde{x} = \tilde{f} \quad \text{or} \quad LU \hat{x} = \hat{f} \]

Can be solved in two steps

\[U \hat{x} = \hat{y} \]
\[L(U \hat{x}) = L \hat{y} = \hat{f} \]

First, we solve

\[L \hat{y} = \hat{f} \]

by forward substitution. Then, we solve

\[U \hat{x} = \hat{y} \]

Using backward substitution.

See triag. Algorithm in book.

(1) Factorization.

(II) Forward- and Backward Substitution.
Stability of weighted average scheme.

Using Von Neumann method

\[U_j^n = \sum_{k=0}^{J-1} A_k^n w_j^k, \quad w_j^k = e^{i \frac{2 \pi j}{J}} \]

Assuming initial conditions are periodic in x of period 2π.

Now, Substitute in the Num. scheme. leads to

\[\sum_{k=0}^{J-1} \left[A_{k+1}^n \left(-r \sigma e^{-i \frac{2 \pi k}{J}} + 1 + 2r - r \sigma e^{i \frac{2 \pi k}{J}} \right) - A_k^n \left(r(1-\theta) e^{-i \frac{2 \pi k}{J}} + 1 - 2r(1-\theta) + r(1-\theta) e^{i \frac{2 \pi k}{J}} \right) \right] w_j^k = 0 \]

Since $e^{-i \frac{2 \pi k}{J}} - e^{i \frac{2 \pi k}{J}} = -2 \cos\left(\frac{2 \pi k}{J}\right)$

And $e^{-i \frac{2 \pi k}{J}} + e^{i \frac{2 \pi k}{J}} = 2 \cos\left(\frac{2 \pi k}{J}\right)$

Then, using orthogonality of w_j^k's

\[A_{k+1}^n = M_k A_k^n \]

Where

\[M_k = 1 - \frac{2r \left(1 - \cos\left(\frac{2 \pi k}{J}\right)\right)}{1 + 2r(1-\cos\left(\frac{2 \pi k}{J}\right))} \]
\[M_k = 1 - \frac{4r \sin^2(k \pi / 3)}{1 + 4r \theta \sin^2(k \pi / 3)} \]

\[A_k''' = M_k A_k'' \quad \Rightarrow \quad A_k'' = (M_k)^n A_k \]

Since we know that the soln. for a periodic initial value problem for Heat cond. should decay \(k \) twice, we will ask \(|M_k| \leq 1 \)

i.e.,

\[-1 \leq 1 - \frac{4r \sin^2(\cdot)}{1 + 4r \theta \sin^2(\cdot)} \leq 1 \]

RHS always satisfied.

LHS is equivalent to

\[\frac{4r \sin^2(\cdot)}{1 + 4r \theta \sin^2(\cdot)} \leq 2 \]

\[4r \sin^2(\cdot) \leq 2 + 8r \theta \sin^2(\cdot) \]

\[2r \sin^2(\cdot) \leq 1 + 4r \theta \sin^2(\cdot) \quad \Rightarrow \quad 2r (1 - 2\theta) \sin^2(\cdot) \leq 1 \]

for all \(k \)
Then the condition should be

$$2v(1-2\theta) \leq 1$$

\[\text{(I) for } 0 \leq \theta < \frac{1}{2} \quad \Rightarrow \quad v \leq \frac{1}{2(1-2\theta)}\]

Remark: Notice that for $\theta = 0$, $v \leq \frac{1}{2}$ explicit scheme.

\[\text{(II) for } \frac{1}{2} \leq \theta \leq 1 \quad \Rightarrow \quad 1-2\theta \leq 0\]

\[\Rightarrow \quad 2v(1-2\theta) \leq 1, \quad \text{for all } v\]

It means weighted scheme is stable for any choice of Δt and Δx. It's said that the scheme is unconditionally stable.