Fredholm Equations with Separable Kernels.

Separable Kernel: \(K(x, y) = \sum_{j=1}^{n} d_j(x) \beta_j(y) \) \hspace{1cm} (1)

Where \(\{d_j(x)\}_{j=1}^{n} \) are real valued continuous functions in \(C[a,b] \).

Linearly independent. The same is true for the set \(\{\beta_j(y)\}_{j=1}^{n} \).

Now, consider \(Ku - \lambda u = f \), \(\lambda \) real \(^{(a)} \)

or

\[
\int_{a}^{b} [K(x, y)u(y)dy - \lambda u(x)] = f(x)
\]

Substituting (1) into (2), we obtain

\[
\int_{a}^{b} \left(\sum_{j=1}^{n} d_j(x) \beta_j(y) u(y)dy \right) - \lambda u(x) = f(x)
\]

which is equivalent to

\[
\sum_{j=1}^{n} [d_j(x) \int_{a}^{b} \beta_j(y)dy] u(y)dy - \lambda u(x) = f(x)
\]

(2.1)

(a) Remark: \(\lambda \) may be complex, but that would lead to complex solutions.
Using the definition of the inner product

\[(f, g) = \int_a^b f(x)\overline{g(x)}\,dx \]

We can rewrite (2.1) as

\[\sum_{j=1}^n \alpha_j(x) (u, \beta_j) - \lambda u(x) = f(x) \]

Calling \((u, \beta_j) = c_j\)

\[\sum_{j=1}^n \alpha_j(x) c_j - \lambda u(x) = f(x). \] (3)

Solving for \(u(x)\) (in case \(\lambda \neq 0\)).

\[u(x) = \frac{1}{\lambda} \left[\sum_{j=1}^n \alpha_j(x) c_j - f(x) \right]. \] (4)

Thus, if somehow we could determine the set of constants \(c_j\)'s via (4), then the solution \(u(x)\) for the 2nd kind Fredholm integral equation (2) could be obtained from (4).
Key idea to determine c_i's is to multiply equation (3) by $\beta_i(x)$ and $\int_a^b dx$, to transform (3) into an algebraic linear system.

\[
\int_a^b \left[\sum_{j=1}^n \left(\int_a^b d_j(x) c_j \right) \beta_i(x) \right] dx - \lambda \int_a^b u(x) \beta_i(x) dx = \int_a^b f(x) \beta_i(x) dx
\]

or interchanging summation and integration.

\[
\sum_{j=1}^n \left(\int_a^b d_j(x) \beta_i(x) dx \right) c_j - \lambda c_i = f_i
\]

Where \(f_i = \int_a^b f(x) \beta_i(x) dx = (f, \beta_i) \).

or

\[
\sum_{j=1}^n (\beta_i, \beta_j) c_j - \lambda c_i = f_i
\]

(5)
Expanding these equations

\[i=1 : (\beta_1, d_1) C_1 + (\beta_1, d_2) C_2 + \ldots + (\beta_1, d_n) C_n - \lambda C_1 = f_1 \]

\[i=2 : (\beta_2, d_1) C_1 + (\beta_2, d_2) C_2 + \ldots + (\beta_2, d_n) C_n - \lambda C_2 = f_2 \]

\[i=n : (\beta_n, d_1) C_1 + (\beta_n, d_2) C_2 + \ldots + (\beta_n, d_n) C_n - \lambda C_n = f_n \]

In matrix notation:

\[
\begin{pmatrix}
(\beta_1, d_1) & (\beta_1, d_2) & \ldots & (\beta_1, d_n) \\
(\beta_2, d_1) & (\beta_2, d_2) & \ldots & (\beta_2, d_n) \\
\vdots & \vdots & \ddots & \vdots \\
(\beta_n, d_1) & (\beta_n, d_2) & \ldots & (\beta_n, d_n)
\end{pmatrix}
\begin{pmatrix}
C_1 \\
C_2 \\
\vdots \\
C_n
\end{pmatrix}
-
\begin{pmatrix}
\lambda & 0 & \ldots & 0 \\
0 & \lambda & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & \lambda
\end{pmatrix}
\begin{pmatrix}
C_1 \\
C_2 \\
\vdots \\
C_n
\end{pmatrix}
=
\begin{pmatrix}
f_1 \\
f_2 \\
\vdots \\
f_n
\end{pmatrix}
\]
or in matrix notation

\[
A \hat{C} - \lambda I \hat{C} = \tilde{f}
\]

where

\[
A = \left[(\beta_i, x_j) \right], \quad \tilde{f} = \left(\begin{array}{c} f_1 \\ \vdots \\ f_n \end{array} \right)
\]

Equ. (6) can also be written as

\[
(A - \lambda I) \hat{C} = \tilde{f}.
\]

Recall that our purpose is to find \(\hat{C} \). So far, our original integral equation (2) has been reduced to the algebraic linear system of equation (7).

Therefore, if the vector \(\hat{C} = \left(\begin{array}{c} c_1 \\ \vdots \\ c_n \end{array} \right) \) satisfies (3) then it also satisfies (7). The reverse of this statement can also be proved.

Therefore, if \(\hat{C} \) is a solution of (7) and \(\lambda \neq 0 \), the vector \(\hat{C} \) can be used in eq. (4) to obtain a solution \(u(x) \) of our original Fredholm integral equation.
Back to equation (7):
\[(A - \lambda I) \hat{C} = \hat{f}\]
(7)

This algebraic linear system will have a unique solution iff
\[\det(A - \lambda I) \neq 0.\]

In other words if and only if \(\lambda\) is not an eigenvalue of \(A\).

Also, this unique solution can be obtained as
\[\hat{C} = (A - \lambda I)^{-1} \hat{f}.\]

This condition in turns implies that our original Fredholm integral equation also has a unique solution given by (4)
\[U(x) = \frac{1}{\lambda} \left[\sum_{j=1}^{n} d_j(x)C_j - f(x) \right].\]

Otherwise, if \(\det(A - \lambda I) = 0\), or equivalently, \(\lambda\) is an eigenvalue of \(A\).

Eqn. (7) will have infinitely many solutions if \(f\) is in the range of \((A - \lambda I)\).

If \(f\) is not a linear comb. of the column vectors of \(A - \lambda I\), there is no solution for (7). The same statements are true for the integral eqn. (2) with separable kernel.
This discussion is summarized in the following theorem:

Theorem (Fredholm Alternative).

For the integral equ. (2) with separable kernel defined by (1), \(\lambda \neq 0 \), and the matrix \(A \) defined by \(A = (a_{ij}(x)) \), the following statements are valid:

1) If \(\lambda \) is not an eigenvalue of \(A \) then (2) has a unique solution given by

\[
U(x) = \frac{1}{\lambda} \left[-f(x) + \sum_{j=1}^{n} a_{j}(x) c_j \right], \quad c_j \in (u_{j}, b_{j})
\]

2) If \(\lambda \) is an eigenvalue of \(A \) then,

a) If \(f \) is in the range of \((A - \lambda I) \), equ. (2) has infinitely many solutions.

b) If \(f \neq 0 \) is not in the range of \((A - \lambda I) \) then equ. (2) has no solution.
Back to Fredholm Integral Equations.

So far, we have an algebraic nonhomogeneous linear system of equations:

\[\sum_{j=1}^{n} (\beta_i, \alpha_j) c_j - \lambda c_i = (f, \beta_i) \quad (18.1) \]

or \[(A - \lambda I) \tilde{C} = \tilde{F} \]

where
\[A = (\alpha_i, \beta_j), \quad \tilde{C} = \begin{pmatrix} (u, \beta_1) \\ \vdots \\ (u, \beta_n) \end{pmatrix}, \quad \tilde{F} = \begin{pmatrix} (f, \beta_1) \\ \vdots \\ (f, \beta_n) \end{pmatrix} \]

which is related to the linear Fredholm integral equation with separable kernel

\[Ku - \lambda u = f \quad (18.2) \]

where
\[Ku = \int_{a}^{b} K(x, y) u(y) dy \]

and
\[K(x, y) = \sum_{j=1}^{n} \alpha_j (x) \beta_j (y) \]

(18.2) written in full is
\[\int_{a}^{b} K(x, y) u(y) dy - \lambda u(x) = f(x) \]
\[\int_{a}^{b} \left(\sum_{j=1}^{n} d_j(x) \beta_j(y) \right) u(y) \, dy - \lambda u(x) = f(x). \]

\[\Rightarrow \sum_{j=1}^{n} d_j(x) \int_{a}^{b} u(y) \beta_j(y) \, dy - \lambda u(x) = f(x). \]

\[\Rightarrow \sum_{j=1}^{n} d_j(x) (u, \beta_j) - \lambda u(x) = f(x) \]

\[\Rightarrow \left[\sum_{j=1}^{n} d_j C_j - \lambda u(x) = f(x) \right] \quad (19.1) \]

from (19.1), if \(\lambda \neq 0 \),

\[u(x) = \frac{1}{\lambda} \left[\sum_{j=1}^{n} d_j C_j - f(x) \right] \quad (19.2) \]

So for \(\lambda \neq 0 \), the procedure to follow to obtain the
Solns. for the integral equ. (18.2) is

1) Solve the Algebraic System (18.1) to find \(\hat{C} = \left(\hat{c}_n \right) \)

2) If there is such a \(\hat{C} \) Soln. of (18.1)
Substitute it in (19.2) to obtain \(u(x) \).
Now, let's study the integral equation for $\lambda = 0$.

\[Ku = f \]

K is separable kernel (20.1)

or

\[\sum_{j=1}^{n} c_j \phi_j(x) = f(x). \]

There are two cases:

a) $Ku = 0$, when $f(x) = 0$. Homogeneous case.

b) $Ku = f$, $f(x) \neq 0$. Nonhomogeneous case.

Compare with $A\hat{x} = \hat{b}$, where A non-neg matrix.

Case (a) Homogeneous case

$Ku = 0$ is equiv. to $\sum_{j=1}^{n} c_j \phi_j(x) = 0(x)$

\[\text{multiplying by \text{bixx} and \text{C} & \text{dx}.} \]

Since ϕ_j is a liner indep set, we don't need to use it.

$\Rightarrow c_j = 0, \quad j = 1, ..., n$.

Therefore,

\[(U_1, \beta_j) = c_j = 0, \quad j = 1, 2, ..., n. \]

So

\[u(x) \perp \beta_j(x), \quad j = 1, ..., n. \]

Now, $u(x) \in L^2[a, b]$ or $C[a, b]$ both infinite-dimensional spaces. Therefore, there are infinitely many $u(x)$ solutions of (20.1)

linearly indep.

\[\text{Rxn: } \beta = \mathbf{e}_1, \quad u_1 = \varepsilon_1, \quad u_2 = \varepsilon_2 \]

\[\varepsilon_3 = \mathbf{e}_3 \]

Two lin indep. solns. only.

Now, think of \mathbf{e}_1 in an infinite-dim. space.
If Case (b) \(f(x) \neq 0 \),
\[Ku = f. \]

Nonhomogeneous case

\[\sum_{j=1}^{n} c_j j(x) = f(x) \text{ is equiv to } Ku = f. \]

Clearly,

1. There is no solution if \(f(x) \) is not a linear combination of \(j(x)'s. \)

2. There are infinitely many solutions linearly indep.

If \(f(x) \) is a linear combination of \(\{ j(x) \}. \)

In fact, \(\sum_{j=1}^{n} c_j j(x) = f(x) = \sum_{j=1}^{n} f_j j(x). \)

\[\text{lin.indep.} \quad C_j = f_j, \quad j = 1, 2, \ldots, n \Rightarrow (2, \beta_j) = f_j, \text{ for all}. \]

So any function \(u(x) \) in \(L_2[0,1] \) such that \((2, \beta_j) = f_j \)

is a solution of \((2.0.1) \). Because \(L_2[0,1] \) is infinite dim.

there are infinitely many linearly indep. solns. \(u(x) \) satisfying this property.

Proof: If \(\{ \beta_j \} \) were an orthonormal set, then \((2, \beta_j) = f_j \)

means that the projection of \(u \) on \(\beta_j \) is \(f_j \).

In \(\mathbb{R}^3 \) for example, there are infinitely many \(u \) satisfying this property. However, they all lie in the same plane. Therefore there are only two linearly independent.
The previous discussion can be summarized in the next theorem.

Theorem 1.3 Consider

\[Ku = f, \]

where the kernel of \(K \) is separable as defined previously, then

a) If \(f(x) \) is a linear combination of \(dj(x) \)'s, then there are infinitely many solutions linearly independent for \((2.1)\).

b) Otherwise, there is not solution.

This theorem includes the case \(Ku = 0 \).

Thus, for \(Ku = 0 \) there are always infinitely many solutions, which is different than \(Ax = 0 \) (a \(n \times n \) matrix).

Therefore, \(\lambda = 0 \) is always an eigenvalue of the Fredholm integral operator with separable kernel. Moreover, \(\lambda = 0 \) is always an eigenvalue of infinite multiplicity.
Another important result is the relationship between eigenvalues of

\[Ku = \lambda u \]

(23.1)

and the corresponding linear system

\[A \vec{v} = \lambda \vec{v} \]

(23.2)

\[A = \left(\begin{array}{ccc} \beta_1 & \cdots & \beta_n \\ \vdots & \ddots & \vdots \\ \beta_n & \cdots & \beta_1 \end{array} \right) \]

Thus:

- The eigenvalues \(\lambda \neq 0 \) of (23.1) are the same eigenvalues of (23.2).
- The multiplicity of these eigenvalues is at most \(n \).
- \(\lambda = 0 \) is always an eigenvalue of \(K \) and its multiplicity is infinite.

Example 1.4 Consider the two Fredholm integral equations

\(a) \quad \int_0^1 (1-3x)u(y) \, dy - \lambda u(x) = \frac{x}{2} \quad (23.3) \)

\(b) \quad \int_0^1 (1-3x)u(y) \, dy - \lambda u(x) = 1-3x \quad (23.4) \)

i) Find their solutions if they exist for any \(\lambda \).
ii) Find the eigenvalues \(\lambda \neq 0 \) of \(Ku = \lambda u \), and find their corresponding eigenvectors.
Let's start working on (iii). We will obtain the eigenvalues from the associated linear system

\[(A - \lambda I) \vec{v} = 0\]

Where \[A = \begin{pmatrix} \beta_1 & d_1 \\ \beta_2 & d_2 \end{pmatrix} \quad \vec{v} = \begin{pmatrix} \beta_1 \\ \beta_2 \end{pmatrix} \]

In our case, \(d_1(x) = 1\), \(\beta_1(y) = 1\), \(d_2(x) = -3x\), \(\beta_2(y) = y\).

Therefore, \(\int_0^1 1 \, dx = 1\), \(\int_0^1 (3x) \, dx = -\frac{3}{2}\), \(\int_0^1 x \, dx = \frac{1}{2}\), \(\int_0^1 -3x^2 \, dx = -1\).

So, \[A = \begin{pmatrix} 1 & -\frac{3}{2} \\ \frac{1}{2} & -1 \end{pmatrix} \]

Eigenvalues: \(\lambda_1 = \frac{1}{2}\), \(\lambda_2 = -\frac{1}{2}\).

For \(\lambda \neq \pm \frac{1}{2}\), there is a unique soln for (23.3) and (23.4) given by

\[U(x) = \frac{1}{\lambda} \left[-f(x) + \sum_{j=1}^{2} c_j \varphi_j(x) \right] \]
While the vector \(\vec{C} \) is the unique solution of

\[
(A - \lambda I) \vec{C} = \vec{f}
\]

(Case a): \[
f_1 = (\beta_0(\lambda x), f_0) = \int_0^1 (1) \frac{x}{2} \, dx = \frac{x^2}{4} \bigg|_0^1 = \frac{1}{4}
\]

\[
f_2 = (\beta_2(\lambda x), f_2) = \int_0^1 \frac{x}{3} \, dx = \frac{1}{6}
\]

Then, the linear system that we need to solve is

\[
\begin{pmatrix}
1 - \lambda & -3/2 \\
1/2 & 1 - \lambda
\end{pmatrix}
\begin{pmatrix}
c_1 \\
c_2
\end{pmatrix}
= \begin{pmatrix}
1/4 \\
1/6
\end{pmatrix}
\Rightarrow \vec{C} = \begin{pmatrix}
c_1 \\
c_2
\end{pmatrix}
= \begin{pmatrix}
-1/3 \\
1/6
\end{pmatrix}
\]

And

\[
U(x) = \frac{1}{\lambda = 1} \left[-\frac{x}{2} + (1/3) \left(-\frac{1}{3} \right) \right] =
\]

\[
= -\frac{x}{2} + \frac{1}{3} \left(-\frac{1}{3} \right)
\]

or unique solution:

\[U(x) \equiv -\frac{1}{3}\]

Verification: Substituting in (23.3): \(\lambda = 1 \), \(u(0) = -\frac{1}{6} \)

\[
\int_0^1 (-\frac{1}{3}x) \, dx + \frac{1}{3} = -\frac{1}{3} \left(\frac{1}{3} \right) + \frac{1}{3} x \bigg|_0^1 = \frac{x^2}{3} \bigg|_0^1 = \frac{x}{3} \checkmark
\]
If $\lambda = \frac{1}{2}$ (for example @1),

the associated linear system is given by

$$(A - \frac{1}{2} I)c = f$$

or

$$\begin{pmatrix}
\frac{1}{2} & -\frac{3}{2} \\
\frac{1}{2} & -\frac{3}{2}
\end{pmatrix}
\begin{pmatrix}
c_1 \\
c_2
\end{pmatrix} =
\begin{pmatrix}
\frac{1}{4} \\
\frac{1}{6}
\end{pmatrix}
$$

there is

$$\begin{cases}
\frac{1}{2} c_1 - \frac{3}{2} c_2 = \frac{1}{4} \\
\frac{1}{2} c_1 - \frac{3}{2} c_2 = \frac{1}{6}
\end{cases} \Rightarrow \text{no solution}
$$

In case (b), the associated linear system is given by

$$\begin{pmatrix}
\frac{1}{2} & -\frac{3}{2} \\
\frac{1}{2} & -\frac{3}{2}
\end{pmatrix}
\begin{pmatrix}
c_1 \\
c_2
\end{pmatrix} =
\begin{pmatrix}
-\frac{1}{2} \\
-\frac{1}{2}
\end{pmatrix}
$$

Infinitely many solns:

$$\frac{1}{2} c_1 - \frac{3}{2} c_2 = -\frac{1}{2} \Rightarrow c_1 = -1 + 3c_2$$

$$\hat{c} = (\frac{-1}{3}) + c_2 (1)$$

If $c_2 = 1 \Rightarrow c_1 = 2 \Rightarrow \hat{c} = (2)$$

and the solution for the integral equation is given by

$\mathcal{U}(x) = \frac{1}{\frac{1}{2}} \left(2 + (-3x) - 13x \right) = 2$

or

$$\boxed{\mathcal{U}(x) = 2}$$

is one possible solution.
ii) Finding eigenvectors:

\[Ku = \lambda u \rightarrow \tilde{v} = \begin{pmatrix} 3 \\ 1 \end{pmatrix} \text{ Corresponding eigenvector} \]

If \(\lambda = \frac{1}{2} \), we can use formula

\[U(x) = \frac{1}{\lambda} \left[\sum_{j=1}^{n} a_j(x) c_j \right] \]

\[\Rightarrow U(x) = \frac{1}{\frac{1}{2}} \left(3(1) + 1(-2x) \right) = 2 \left(3 - 2x \right) = 6 - 6x \]

of eigenfunction corresponding to \(\lambda = \frac{1}{2} \)

\[U(x) = 6(1-x) \]

Any multiple of \(\tilde{v} = \begin{pmatrix} 3 \\ 1 \end{pmatrix} \) is also an eigenvector corresponding to \(\lambda = \frac{1}{2} \). Therefore, any multiple of \(U(x) = 1-x \) is also an eigenfunction.

Similarly, for \(\lambda = -\frac{1}{2} \) corresponding eigenfunctions are multiples of \(U(x) = 1-3x \).