1. Define what it means for a subset $A \subseteq \mathbb{R}$ to be bounded.

2. State the Completeness Axiom.

3. State the Archimedean Property.

4. Prove $\lim_{n \to \infty} \frac{1}{n} = 0$.

5. Show a convergent sequence is bounded.

6. Show a bounded increasing sequence converges to its supremum.

7. Give the sequence definition of what it means for a function $f : D \to \mathbb{R}$ to be continuous at a point x_0.

8. Give the epsilon-delta definition of what it means for a function $f : D \to \mathbb{R}$ to be continuous at a point x_0.

9. If $x_n \to A$ and $y_n \to B$ are convergent sequences, show $x_n y_n \to AB$.

10. Show a continuous function on a closed interval is bounded above.

11. If $0 < r < 1$, show that $\lim_{n \to \infty} r^n = 0$.

12. Prove the Special Case of the Intermediate Value Theorem. If $f : [a, b] \to \mathbb{R}$ is a continuous function with $f(a) < 0$ and $f(b) > 0$, show there is a point x_0 in the open interval (a, b) at which $f(x_0) = 0$.