Math 315-003

Test 3

Name____________________

April 2, 3, 5, 2004

Show relevant work!

D. Wright

1. State and prove the First Fundamental Theorem of Calculus.

2. Suppose the function $f : \mathbb{R} \to \mathbb{R}$ is continuous. Define

$$G(x) = \int_0^x (x - t)f(t)dt$$

for all x. Prove that $G''(x) = f(x)$ for all x.

3. Describe in words the n^{th} degree Taylor Polynomial for a function f at the point x_0. Explain why it is uniquely determined.

4. Show the number e is irrational.
5. Show that the Taylor expansion of \(f(x) = \sin(x) \) at \(x_0 = 0 \) converges for all points \(x \).

6. Suppose that \(\sum_{k=1}^{\infty} a_k \) converges. Show \(\lim_{n \to \infty} a_n = 0 \).

7. Define what it means for a sequence to be Cauchy and show that a convergent sequence is Cauchy.

8. Suppose \(\sum_{k=1}^{\infty} a_k \) and \(\sum_{k=1}^{\infty} b_k \) are series of positive numbers such that \(\lim_{k \to \infty} \left(\frac{a_k}{b_k} \right) = \lambda \) and \(\lambda > 0 \). Show that \(\sum_{k=1}^{\infty} a_k \) converges if and only if the series \(\sum_{k=1}^{\infty} b_k \) converges.
9. For a number r such that $|r| < 1$, show $\sum_{k=1}^{\infty} r^k$ converges.

10. Does the series $\sum_{k=1}^{\infty} \frac{1}{(k+1)\ln(k + 1)}$ converge? Prove your assertion.