1. Which one of the conics is represented by the equation $x^2 - 4x + 3y^2 - 6y - 2 = 0$
 a) hyperbola b) parabola c) ellipse d) circle e) none of the above

2. Find the asymptotes of the hyperbola $\frac{y^2}{9} - \frac{x^2}{16} = 1$
 a) $y = \pm \frac{3}{4}x$ b) $y = \pm \frac{4}{3}x$ c) $y = \pm 4x$ d) $y = \pm 3x$

3. Find the center of the ellipse given by the equation $x^2 + 4y^2 - 2x + 16y + 13 = 0$
 a) (1,2) b) (-2,-2) c) (-2,2) d) (1,-2) e) (-1,2)

4. Solve the following system of equations. Find the product $x \cdot y$
 \[
 \begin{align*}
 2x - y &= 3 \\
 3x + 2y &= 8
 \end{align*}
 \]
 a) $x \cdot y = -4$ b) $x \cdot y = -2$ c) $x \cdot y = 0$ d) $x \cdot y = 2$ e) $x \cdot y = 4$

5. Solve the following system of equations. Find y.
 \[
 \begin{align*}
 x + 2y + 3z &= 1 \\
 x + 3y + 2z &= 8 \\
 x + y + z &= 3
 \end{align*}
 \]
 a) $y = -4$ b) $y = -1$ c) $y = 0$ d) $y = 1$ e) $y = 4$
6. \[\frac{-2}{x(x-1)} = \frac{A}{x} + \frac{B}{x-1} \] Find the product \(A \cdot B \)

a) \(A \cdot B = -16 \)

b) \(A \cdot B = -4 \)

c) \(A \cdot B = 0 \)

d) \(A \cdot B = 2 \)

e) \(A \cdot B = 4 \)

7. Which expression should be used to find the partial fraction decomposition of \(\frac{x^2 - 3x + 5}{x(x-1)(x+1)^2} \)

a) \(\frac{A}{x^2 + 4x - 2} + \frac{B}{x} + \frac{C}{(x + 1)^2} \)

b) \(\frac{A}{x} + \frac{B}{x - 1} + \frac{C}{(x + 1)} + \frac{Dx + E}{(x + 1)^2} \)

c) \(\frac{A}{x} + \frac{B}{x + 1} + \frac{C}{(x + 1)^2} \)

d) \(\frac{A}{x} + \frac{B}{x - 1} + \frac{C}{(x + 1)} + \frac{D}{(x + 1)^2} \)

e) \(\frac{A}{x} + \frac{B}{x - 1} + \frac{Cx + D}{(x + 1)^2} \)

8. How many solutions of the following system of equations are there?

\[\begin{align*}
\frac{x^2}{9} + \frac{y^2}{25} &= 1 \\
x^2 - 1 &= y
\end{align*} \]

a) 0

b) 1

c) 2

d) 3

e) 4
9. Solve the following system of equations. What is the sum of all possible y value(s)?

\[
\begin{align*}
&x^2 - y^2 = 7 \\
&x + y = 1
\end{align*}
\]

a) -4 b) -3 c) 0 d) 3 e) 4

10. Find the second term in the sequence defined by \(\binom{(-4)^n}{n+2} \)

a) 1/2 b) 4 c) 16 d) -2 e) 1

11. Find the sum \(\sum_{n=1}^{4} 3^n \)

a) 12 b) 30 c) 81 d) 120 e) none of the above.

12. The sequence given by \(a_n = 3(n - 1) \) is:

a) geometric c) both arithmetic and geometric
b) arithmetic d) neither arithmetic nor geometric

13. Find the 101st term of the arithmetic sequence \{2, 8, 14, 20, . . . \}

a) 398 b) 602 c) 620 d) 662 e) 1212

14. Find the arithmetic sum \(2 + 5 + 8 + \ldots + 101 \)

a) 116 b) 1734 c) 1751 d) 1750
15. What is the sum of the first five terms of the sequence defined by the recursive equations:
 \[s_1 = 1, \quad s_n = 2s_{n-1} \]

a) 16 b) 15 c) 31 d) 63 e) none of the above

16. The first term of a geometric sequence is 2 the common ratio is 3. What is the 4th term?

a) 54 b) 24 c) 162 d) 18 e) none of the above

17. Find the infinite geometric sum
 \[1 + \frac{1}{4} + \frac{1}{4^2} + \frac{1}{4^3} \ldots \]

a) \frac{4}{5} b) \frac{4}{3} c) \frac{3}{4} d) \frac{\sqrt{2}}{2}

18. In using mathematical induction to prove that
 \[1^2 + 2^2 + 3^2 + \ldots + n^2 = \frac{n(n + 1)(2n + 1)}{6} \]
 what term must be added to the left side of the equation when \(n \) is replaced by \(n + 1 \).

a) \(n \) b) \(n^2 \) c) \((n + 1) \) d) \(2n + 1 \) e) \((n + 1)^2 \) f) \((2n + 1)^2 \)

19. Let \(A = \{1,2,5,6,8,9\} \), \(B = \{1,2,5,7,9\} \), and \(C = \{0,2,6,7,8,9\} \).
 Find \((A \cup B) \cap C \).

a) \{2, 9\} b) \{2, 8, 9\} c) \{2, 6, 7, 9, 8\} d) \{ 0, 1, 2, 4, 7, 8, 9\}

20. Let \(n(C) = \) the number of elements in a set \(C \). If \(A \) and \(B \) are sets and if \(n(A \cap B) = 15 \), \(n(A) = 27 \) and \(n(B) = 21 \). Find \(n(A \cup B) \).

a) 6 b) 48 c) 42 d) 36 e) 27 f) 33
Answers

1. C
2. A
3. D
4. D
5. E
6. B
7. D
8. C
9. B
10. B
11. D
12. B
13. B
14. C
15. C
16. A
17. B
18. E
19. C
20. F