Mathematics Department

Brooks, Jennifer




Email: jbrooks@mathematics.byu.edu
Office: 352 TMCB
Phone Number: 801-422-7854

Click here to view Jennifer Brooks’ Curriculum Vitae

Office Hours: N/A

Class Schedule: No Classes Spring/Summer 2023

Research Interests: Several complex variables and harmonic analysis

Degrees: Ripon College, Bachelor of Arts, summa cum laude (1996), University of Wisconsin at Madison, PhD in Mathematics (2005)

Publications:
  • An interesting family of symmetric polynomials, J. Brooks
  • Zeros of a one-parameter family of harmonic trinomials, M. Brilleslyper, J. Brooks, M. Dorff, R. Howell, and L. Schaubroeck
  • Constructing Group-Invariant CR Mappings, J. Brooks, S. Curry, D. Grundmeier, P. Gupta, V. Kintz, A. Malcom, and K. Palencia
  • Zeros of a family of complex-valued harmonic trinomials, J. Brooks, M. Dorff, A. Hudson, E. Pitts, C. Whiffen, and A. Woodall
  • Zeros of several one-parameter families of harmonic functions, J. Brooks, M. Dorff, S. Muthuprakash, and P. Tanner
  • Sum of squares conjecture: the monomial case in C^3, J. Brooks and D. Grundmeier
  • Algebraic properties of Hermitian sums of squares, J. Brooks and D. Grundmeier
  • Algebraic properties of Hermitian sums of squares, II, J. Brooks, D. Grundmeier, and H. Schenck
  • Zeros of a family of complex-valued harmonic functions with poles, J. Brooks and A. Lee
  • A rank question for homogeneous polynomials, J. Brooks and K. Palencia
  • Exploring the infinite: an introduction to proofs and analysis, J. Brooks
  • The Szego kernel for certain non-pseudoconvex domains in C^2, M. Gilliam and J. Halfpap
  • The Szego kernel for non-pseudoconvex tube domains in C^2, M. Gilliam and J. Halfpap
  • An application of Macaulay's estimate to sums of squares problems in several complex variables, D. Grundmeier and J. Halfpap-Kacmarcik
  • CR extension for tube-like CR manifolds of CR dimension 1, J. Halfpap
  • Rotation of wedges of extendability for tube-like CR manifolds of CR dimension 1, J. Halfpap
  • Signature pairs of positive polynomials, J. Halfpap and J. Lebl
  • The Bergman and Szego kernels near points of infinite type , J. Halfpap, A. Nagel, and S. Wainger