Skip to main content
Faculty/McKay, Steven 07.jpg

Steven McKay

Teaching Professor
Permanent Faculty

Office: 236 TMCB

Teaching Schedule Fall 2025

Office Hours
  • MWF 11-11:50am in 236 TMCB
  • MWF 1-1:50pm in 236 TMCB
  • TTh 2-2:50pm in 236 TMCB
ClassMATH 213 Section 002TTh 10-10:50am3104 JKB
MATH 213 Section 003TTh 12-12:50pm3104 JKB
MATH 303 Section 001MTWTh 9-9:50am135 TMCB
MATH 413 Section 001MWF 10-10:50am121 TMCB

Degrees:

Utah State University, BS in Mathematics (1983), MS in Mathematics (1985)
Colorado State University, PhD in Mathematics (1990)

Publications:

  1. Heroux, M., S. McCormick, S.M. McKay, and J.W. Thomas, Applications of the fast adaptive composite grid method, Lecture Notes in Pure and Applied Mathematics 110, Marcel-Decker, (1988).
  2. McCormick, S.F., S.M. McKay, and J.W. Thomas, Computational Complexity of the fast adaptive composite grid (FAC) method, Applied Numerical Mathematics 6 (1989/90) pp. 315{327 .
  3. McKay, S.M., and J.W. Thomas, Application of the self adaptive time dependent fast adaptive composite grid method, Proceedings of the fourth copper mountain conference on multigrid methods, (J. Mandel, S.F. McCormick, J.E. Dendy, Jr., C. Farhardt, G. Lonsdale, S.V. Parter, J.W. Ruge, and K. Stuben, eds.,) SIAM, (1989), pp. 338{ 347.
  4. McKay, S.M., and J.W. Thomas, Application of the fast adaptive composite grid method to nonlinear partial di
  5. McKay, S.M., and J.W. Thomas, Resolution of moving fronts using the self-adaptive time-dependent fast adaptive composite grid method, Comm. in Appl. Num. Meth., 8, (1992), pp 651{659.
  6. Thomas, J.W., M. Heroux, S. McKay, S. McCormick and A.M. Thomas, Application of the fast adaptive composite grid method to computational uid dynamics, Numerical Methods in Laminar and Turbulent Flow (C. Taylor, W.G. Habashi and M.M. Hafez, eds.,) Pineridge Press, Swansea, U.K., (1987), pp. 1071{1082.
  7. Thomas, J.W., and S.M. McKay, Generation of FAC patched grids, Numerical Grid Generation in Computational Fluid Mechanics '88, (S. Sengupta, J. Hauser, P.R. Eiseman, and J.F. Thompson, eds.), Pineridge Press, Swansea, U.K., (1988).
  8. Mckay, S.M., and C.L. Weingartner, Solution of the Sharpe-Lotka population model via a modified method of characteristics, Appl. Math. and Comp., 91 (1998) 161-177.