Skip to main content

Jennifer Brooks

Professor
Permanent Faculty

Office: 352 TMCB

Office Hours: N/A

Class Schedule: No Classes Spring/Summer 2023

Research Interests: Several complex variables and harmonic analysis

Degrees: Ripon College, Bachelor of Arts, summa cum laude (1996), University of Wisconsin at Madison, PhD in Mathematics (2005)

Publications:

  1. An interesting family of symmetric polynomials, J. Brooks
  2. Zeros of a one-parameter family of harmonic trinomials, M. Brilleslyper, J. Brooks, M. Dorff, R. Howell, and L. Schaubroeck
  3. Constructing Group-Invariant CR Mappings, J. Brooks, S. Curry, D. Grundmeier, P. Gupta, V. Kintz, A. Malcom, and K. Palencia
  4. Zeros of a family of complex-valued harmonic trinomials, J. Brooks, M. Dorff, A. Hudson, E. Pitts, C. Whiffen, and A. Woodall
  5. Zeros of several one-parameter families of harmonic functions, J. Brooks, M. Dorff, S. Muthuprakash, and P. Tanner
  6. Sum of squares conjecture: the monomial case in C^3, J. Brooks and D. Grundmeier
  7. Algebraic properties of Hermitian sums of squares, J. Brooks and D. Grundmeier
  8. Algebraic properties of Hermitian sums of squares, II, J. Brooks, D. Grundmeier, and H. Schenck
  9. Zeros of a family of complex-valued harmonic functions with poles, J. Brooks and A. Lee
  10. A rank question for homogeneous polynomials, J. Brooks and K. Palencia
  11. Exploring the infinite: an introduction to proofs and analysis, J. Brooks
  12. The Szego kernel for certain non-pseudoconvex domains in C^2, M. Gilliam and J. Halfpap
  13. The Szego kernel for non-pseudoconvex tube domains in C^2, M. Gilliam and J. Halfpap
  14. An application of Macaulay's estimate to sums of squares problems in several complex variables, D. Grundmeier and J. Halfpap-Kacmarcik
  15. CR extension for tube-like CR manifolds of CR dimension 1, J. Halfpap
  16. Rotation of wedges of extendability for tube-like CR manifolds of CR dimension 1, J. Halfpap
  17. Signature pairs of positive polynomials, J. Halfpap and J. Lebl
  18. The Bergman and Szego kernels near points of infinite type , J. Halfpap, A. Nagel, and S. Wainger